Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation.

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2025-02-01 Epub Date: 2024-12-22 DOI:10.1016/j.nbd.2024.106775
Hiroto Nakano, Sadao Hikishima, Makoto Mori, Jota Minamikawa, Daiki Muramatsu, Yasuhiro Sakashita, Tokuhei Ikeda, Moeko Noguchi-Shinohara, David B Teplow, Kenjiro Ono
{"title":"Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation.","authors":"Hiroto Nakano, Sadao Hikishima, Makoto Mori, Jota Minamikawa, Daiki Muramatsu, Yasuhiro Sakashita, Tokuhei Ikeda, Moeko Noguchi-Shinohara, David B Teplow, Kenjiro Ono","doi":"10.1016/j.nbd.2024.106775","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of amyloid β-proteins (Aβ) in the extracellular space, forming insoluble plaques, is a primary pathological process underlying Alzheimer's disease (AD). Among the various Aβ species that appear during Aβ aggregation, Aβ oligomers are considered the most neurotoxic form. However, the precise mechanisms of their molecular functions within the Aβ aggregation cascade have not been clarified so far. This research aimed to uncover the structural and functional characteristics of globular-shaped Aβ oligomers (gAβO) under in vitro conditions. We performed thioflavin T (ThT) assays on low-molecular-weight (LMW) Aβ42, testing different concentrations of Aβ42 mature fibril (MF) seeds and gAβO. Fibril formation was continuously observed using high-speed atomic force microscopy (HS-AFM) in LMW Aβ42 with different sample conditions. Conformational changes of Aβ42 aggregates in the presence of gAβO was also evaluated using circular dichroism spectroscopy. The results of the ThT analysis and HS-AFM observation indicated that gAβO promoted fibril formation of LMW Aβ42 while gAβO itself did not form fibrous aggregates, indicating that gAβO would have a catalytic effects on LMW Aβ42 aggregation. We also showed that the molecular interaction of gAβO was altered by the presence and amount of MF seeds in the reaction buffers, indicating that complex interactions would exist among different Aβ species. The results of our present research demonstrated that gAβO would have significant roles to accelerate Aβ aggregation in AD pathogenesis. 225 < 250 words.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":" ","pages":"106775"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nbd.2024.106775","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of amyloid β-proteins (Aβ) in the extracellular space, forming insoluble plaques, is a primary pathological process underlying Alzheimer's disease (AD). Among the various Aβ species that appear during Aβ aggregation, Aβ oligomers are considered the most neurotoxic form. However, the precise mechanisms of their molecular functions within the Aβ aggregation cascade have not been clarified so far. This research aimed to uncover the structural and functional characteristics of globular-shaped Aβ oligomers (gAβO) under in vitro conditions. We performed thioflavin T (ThT) assays on low-molecular-weight (LMW) Aβ42, testing different concentrations of Aβ42 mature fibril (MF) seeds and gAβO. Fibril formation was continuously observed using high-speed atomic force microscopy (HS-AFM) in LMW Aβ42 with different sample conditions. Conformational changes of Aβ42 aggregates in the presence of gAβO was also evaluated using circular dichroism spectroscopy. The results of the ThT analysis and HS-AFM observation indicated that gAβO promoted fibril formation of LMW Aβ42 while gAβO itself did not form fibrous aggregates, indicating that gAβO would have a catalytic effects on LMW Aβ42 aggregation. We also showed that the molecular interaction of gAβO was altered by the presence and amount of MF seeds in the reaction buffers, indicating that complex interactions would exist among different Aβ species. The results of our present research demonstrated that gAβO would have significant roles to accelerate Aβ aggregation in AD pathogenesis. 225 < 250 words.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球状Aβ低聚物具有促进Aβ聚集和促进纤维伸长的多种机制。
淀粉样β蛋白(a β)在细胞外空间积聚,形成不溶性斑块,是阿尔茨海默病(AD)的主要病理过程。在Aβ聚集过程中出现的各种Aβ物种中,Aβ低聚物被认为是最具神经毒性的形式。然而,它们在Aβ聚集级联中的分子功能的确切机制迄今尚未明确。本研究旨在揭示球形Aβ低聚物(gAβO)在体外条件下的结构和功能特征。我们对低分子量(LMW) Aβ42进行了硫黄素T (ThT)测定,检测了不同浓度的Aβ42成熟原纤维(MF)种子和a β o。利用高速原子力显微镜(HS-AFM)连续观察了不同样品条件下LMW a - β42的纤维形成情况。利用圆二色光谱分析了Aβ42聚集体在gAβO存在下的构象变化。ThT分析和HS-AFM观察结果表明,gAβO促进了LMW a - β42的纤维形成,而gAβO本身不形成纤维聚集体,说明gAβO对LMW a - β42的聚集具有催化作用。我们还发现,反应缓冲液中MF种子的存在和数量改变了Aβ o的分子相互作用,表明不同Aβ物种之间存在复杂的相互作用。我们目前的研究结果表明,gAβO可能在AD发病过程中具有显著的加速Aβ聚集的作用。225
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
Whole transcriptome analysis of unmutated sporadic ALS patients' peripheral blood reveals phenotype-specific gene expression signature. Alpha-synuclein pathology enhances peripheral and CNS immune responses to bacterial endotoxins. Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease. Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation. Peripheral nerve injury induces dystonia-like movements and dysregulation in the energy metabolism: A multi-omics descriptive study in Thap1+/- mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1