The diagnostic value and molecular mechanisms of LncRNA ZFAS1 in neuropathic pain.

IF 2.5 4区 医学 Q3 NEUROSCIENCES Neuroscience Letters Pub Date : 2024-12-22 DOI:10.1016/j.neulet.2024.138097
Yunchao Chu, Jing Chen, Huaqing Cui, Qiuyi Xie, Shasha Mei
{"title":"The diagnostic value and molecular mechanisms of LncRNA ZFAS1 in neuropathic pain.","authors":"Yunchao Chu, Jing Chen, Huaqing Cui, Qiuyi Xie, Shasha Mei","doi":"10.1016/j.neulet.2024.138097","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Long non-coding RNA (lncRNA) has been playing an increasingly significant role in neuropathic pain (NP). This study aimed to investigate the clinical significance and mechanism of LncRNA ZNFX1 antisense RNA 1 (ZFAS1) in NP.</p><p><strong>Methods: </strong>92 patients with NP and 85 healthy controls were enrolled, and a rat NP model was constructed by chronic constrictive injury (CCI). LPS-induced microglia BV2 cells were used to construct an in vitro cellular model. RT-qPCR analysis of the mRNA levels of ZFAS1, miR-421, and Iba-1 (markers of microglia activation). Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to assess mechanosensitive and thermal nociceptive allergic responses. ELISA assay for pro-inflammatory factors and anti-inflammatory factors expression. ROC assay for the diagnostic value of ZFAS1. Validation of the targeting between ZFAS1 and miR-421 by dual luciferase reporter assay.</p><p><strong>Results: </strong>ZFAS1 significantly increased while miR-421 significantly decreased in individuals with NP, in a rat model of CCI, and in LPS-induced microglial cells. Functionally, miR-421 directly targeted ZFAS1. ZFAS1 levels could significantly differentiate between NP patients and control (AUC = 0.910). Low expression of ZFAS1 significantly alleviated PWL and PWT in CCI rats. Elevated neuro-proinflammatory factors and decreased anti-inflammatory factors in CCI rats were significantly reversed by low expression of ZFAS1, but this is partially weakened by low expression of miR-421. Moreover, silencing ZFAS1 hindered the upregulation of Iba-1 expression induced by LPS, which was rescued significantly by miR-421.</p><p><strong>Conclusion: </strong>Elevated ZFAS1 is a potential bio-diagnostic marker for NP. Inhibition of ZFAS1 may alleviate NP progression by inhibiting microglia activation and neuro-inflammatory responses.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138097"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138097","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Long non-coding RNA (lncRNA) has been playing an increasingly significant role in neuropathic pain (NP). This study aimed to investigate the clinical significance and mechanism of LncRNA ZNFX1 antisense RNA 1 (ZFAS1) in NP.

Methods: 92 patients with NP and 85 healthy controls were enrolled, and a rat NP model was constructed by chronic constrictive injury (CCI). LPS-induced microglia BV2 cells were used to construct an in vitro cellular model. RT-qPCR analysis of the mRNA levels of ZFAS1, miR-421, and Iba-1 (markers of microglia activation). Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to assess mechanosensitive and thermal nociceptive allergic responses. ELISA assay for pro-inflammatory factors and anti-inflammatory factors expression. ROC assay for the diagnostic value of ZFAS1. Validation of the targeting between ZFAS1 and miR-421 by dual luciferase reporter assay.

Results: ZFAS1 significantly increased while miR-421 significantly decreased in individuals with NP, in a rat model of CCI, and in LPS-induced microglial cells. Functionally, miR-421 directly targeted ZFAS1. ZFAS1 levels could significantly differentiate between NP patients and control (AUC = 0.910). Low expression of ZFAS1 significantly alleviated PWL and PWT in CCI rats. Elevated neuro-proinflammatory factors and decreased anti-inflammatory factors in CCI rats were significantly reversed by low expression of ZFAS1, but this is partially weakened by low expression of miR-421. Moreover, silencing ZFAS1 hindered the upregulation of Iba-1 expression induced by LPS, which was rescued significantly by miR-421.

Conclusion: Elevated ZFAS1 is a potential bio-diagnostic marker for NP. Inhibition of ZFAS1 may alleviate NP progression by inhibiting microglia activation and neuro-inflammatory responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
期刊最新文献
Sex related differences in cognitive deficits: Disrupted Arc/Arg3.1 signaling in an HIV model. Exploring the antinociceptive effect of taraxasterol in mice: Possible mechanisms. Agmatine diminishes behavioral and endocrine alterations in a rat model of post-traumatic stress disorder. Anti-panic effect of fluoxetine during late diestrus in female rats is mediated through GABAergic mechanisms in the dorsal periaqueductal gray. Middle-aged females are resistant to LPS-induced learning deficits: Sex comparison.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1