Ahmet Can, Osman Gencel, Ahmet Sarı, Gökhan Hekimoğlu
{"title":"Wood flour/-Poly(methyl methacrylate)/Capric acid Polymer Composites as Form-Stable Phase Change Materials for Thermal Energy Management","authors":"Ahmet Can, Osman Gencel, Ahmet Sarı, Gökhan Hekimoğlu","doi":"10.1016/j.polymer.2024.127989","DOIUrl":null,"url":null,"abstract":"This study focuses on the preparation and characterization of wood flour (WF)/polymethyl methacrylate (PMMA)/capric acid (CA) composite form-stable phase change materials (PCM) prepared by PMMA modification method, with WF selected as the support material. The surface morphology (scanning electron microscopy SEM), chemical structure (Fourier transform infrared spectrometer, FTIR), crystalline structure (X-ray diffraction, XRD), phase change properties (differential scanning calorimeter, DSC), thermal stability (thermogravimetric analysis, TGA) of the prepared WF/PMMA/CA composite form-stable PCMs were investigated. SEM analysis demonstrates that the wood surfaces were coated with CA and PMMA. As the PMMA ratio on the surfaces increased, the amount of leaching decreased. FTIR and XRD results suggested that the structure of the PMMA polymer is also seen in the prepared composite materials. There was no chemical reaction but only physical interactions between WF and CA. The generated WF/PMMA/CA composite PCMs exhibited high latent heats and an appropriate phase change temperature range; in particular, the WF/PMMA/CA (1/1/2)'s highest latent heats throughout the melting and freezing processes were 95.08 J/g and 91.29 J/g, respectively. Using higher proportions of CA provides more energy storage capacity; however, the contribution of PMMA further enhances this effect, strengthening the energy storage performance. Thermal conductivity increased by 63.9% in WF/PMMA/CA (1/1/2).","PeriodicalId":405,"journal":{"name":"Polymer","volume":"65 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127989","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the preparation and characterization of wood flour (WF)/polymethyl methacrylate (PMMA)/capric acid (CA) composite form-stable phase change materials (PCM) prepared by PMMA modification method, with WF selected as the support material. The surface morphology (scanning electron microscopy SEM), chemical structure (Fourier transform infrared spectrometer, FTIR), crystalline structure (X-ray diffraction, XRD), phase change properties (differential scanning calorimeter, DSC), thermal stability (thermogravimetric analysis, TGA) of the prepared WF/PMMA/CA composite form-stable PCMs were investigated. SEM analysis demonstrates that the wood surfaces were coated with CA and PMMA. As the PMMA ratio on the surfaces increased, the amount of leaching decreased. FTIR and XRD results suggested that the structure of the PMMA polymer is also seen in the prepared composite materials. There was no chemical reaction but only physical interactions between WF and CA. The generated WF/PMMA/CA composite PCMs exhibited high latent heats and an appropriate phase change temperature range; in particular, the WF/PMMA/CA (1/1/2)'s highest latent heats throughout the melting and freezing processes were 95.08 J/g and 91.29 J/g, respectively. Using higher proportions of CA provides more energy storage capacity; however, the contribution of PMMA further enhances this effect, strengthening the energy storage performance. Thermal conductivity increased by 63.9% in WF/PMMA/CA (1/1/2).
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.