Nuclear pore permeability and fluid flow are modulated by its dilation state

IF 14.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Cell Pub Date : 2024-12-26 DOI:10.1016/j.molcel.2024.11.038
Patrick C. Hoffmann, Hyuntae Kim, Agnieszka Obarska-Kosinska, Jan Philipp Kreysing, Eli Andino-Frydman, Sergio Cruz-León, Erica Margiotta, Lenka Cernikova, Jan Kosinski, Beata Turoňová, Gerhard Hummer, Martin Beck
{"title":"Nuclear pore permeability and fluid flow are modulated by its dilation state","authors":"Patrick C. Hoffmann, Hyuntae Kim, Agnieszka Obarska-Kosinska, Jan Philipp Kreysing, Eli Andino-Frydman, Sergio Cruz-León, Erica Margiotta, Lenka Cernikova, Jan Kosinski, Beata Turoňová, Gerhard Hummer, Martin Beck","doi":"10.1016/j.molcel.2024.11.038","DOIUrl":null,"url":null,"abstract":"Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold <em>Dictyostelium discoideum</em>, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of <em>D. discoideum</em> to quantify fluid flow across NPCs. <em>D. discoideum</em> has an elaborate NPC structure <em>in situ</em>. Its dilation state affects NPC permeability for nucleocytosolic flow. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across NPCs, which is distinct from canonically characterized modes of nucleocytoplasmic transport because of its dependence on pressure. Viral NPC blockage decreased nucleocytosolic flow. Our results may be relevant for any biological conditions that entail rapid nuclear size adaptation, including metastasizing cancer cells, migrating cells, or differentiating tissues.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"32 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.11.038","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D. discoideum to quantify fluid flow across NPCs. D. discoideum has an elaborate NPC structure in situ. Its dilation state affects NPC permeability for nucleocytosolic flow. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across NPCs, which is distinct from canonically characterized modes of nucleocytoplasmic transport because of its dependence on pressure. Viral NPC blockage decreased nucleocytosolic flow. Our results may be relevant for any biological conditions that entail rapid nuclear size adaptation, including metastasizing cancer cells, migrating cells, or differentiating tissues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核孔渗透率和流体流动受核孔膨胀状态的调节
不断变化的环境条件需要细胞质和核体积的快速适应。我们使用黏菌盘状钢(Dictyostelium disideum)来评估核孔复合物(npc)在实现核体积适应和缓解机械应力方面的作用。盘状钢以其耐受渗透压极端变化的能力而闻名。我们利用D. discoideum的独特特性来量化npc之间的流体流动。盘状蝶在原位有一个精细的鼻咽癌结构。其扩张状态影响鼻咽癌对核胞浆流动的渗透性。基于流体力学的数学概念,我们将这种现象概念化为npc之间的多孔流动,这与典型的核细胞质运输模式不同,因为它依赖于压力。病毒性鼻咽癌阻断减少核胞浆流量。我们的结果可能与任何需要快速核大小适应的生物学条件相关,包括转移癌细胞,迁移细胞或分化组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
期刊最新文献
tRNA intron-derived small regulatory RNAs fine-tune gene expression under oxidative stress Nucleic-acid-induced ZCCHC3 condensation promotes broad innate immune responses Tuning up gene transcription via direct crosstalk of DNA and RNA methylation Moving epigenetic inheritance into the space age: Evidence that 3D genome organization is required for the establishment of epigenetic memory COMET enables direct screening for interactions between E3 ubiquitin ligases and their proteolytic target proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1