Irmela R.E.A. Trussina, Andreas Hartmann, Christine Desroches Altamirano, Janani Natarajan, Charlotte M. Fischer, Marta Aleksejczuk, Hannes Ausserwöger, Tuomas P.J. Knowles, Michael Schlierf, Titus M. Franzmann, Simon Alberti
{"title":"G3BP-driven RNP granules promote inhibitory RNA-RNA interactions resolved by DDX3X to regulate mRNA translatability","authors":"Irmela R.E.A. Trussina, Andreas Hartmann, Christine Desroches Altamirano, Janani Natarajan, Charlotte M. Fischer, Marta Aleksejczuk, Hannes Ausserwöger, Tuomas P.J. Knowles, Michael Schlierf, Titus M. Franzmann, Simon Alberti","doi":"10.1016/j.molcel.2024.11.039","DOIUrl":null,"url":null,"abstract":"Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates. The DEAD-box RNA helicase DDX3X attenuates RNA-RNA interactions inside RNP granule-like condensates, rendering the condensates dynamic and enabling mRNA translation. Importantly, disease-associated and catalytically inactive DDX3X variants fail to resolve such RNA-RNA interactions. Inhibiting DDX3X in cultured cells accelerates RNP granule assembly and delays their disassembly, indicating that RNA-RNA interactions contribute to RNP granule stability in cells. Our findings reveal how RNP granules generate inhibitory RNA-RNA interactions that are modulated by DEAD-box RNA helicases to ensure RNA availability and translatability.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"2 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.11.039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates. The DEAD-box RNA helicase DDX3X attenuates RNA-RNA interactions inside RNP granule-like condensates, rendering the condensates dynamic and enabling mRNA translation. Importantly, disease-associated and catalytically inactive DDX3X variants fail to resolve such RNA-RNA interactions. Inhibiting DDX3X in cultured cells accelerates RNP granule assembly and delays their disassembly, indicating that RNA-RNA interactions contribute to RNP granule stability in cells. Our findings reveal how RNP granules generate inhibitory RNA-RNA interactions that are modulated by DEAD-box RNA helicases to ensure RNA availability and translatability.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.