{"title":"From one-dimensional to three-dimensional: effect of lateral inhomogeneity on tidal gravity and its implications for lithospheric strength","authors":"Zhenyu Wang, Qian Zhao, Zhigang Shao, Wuxing Wang","doi":"10.1007/s00190-024-01907-5","DOIUrl":null,"url":null,"abstract":"<p>Lateral inhomogeneity in the Earth’s mantle affects the tidal response. The current study reformulates the expressions for estimating the lateral inhomogeneity effects on tidal gravity with respect to the unperturbed Earth and supplements some critical derivation process to enhance the methodology. The effects of lateral inhomogeneity are calculated using several real Earth models. By considering the collective contributions of seismic wave velocity disturbances and density disturbance, the global theoretical changes of semidiurnal gravimetric factor are obtained, which vary from − 0.22 to 0.22% compared to those in a layered Earth model, about 1/2 of the ellipticity’s effect. The gravity changes caused by lateral-inhomogeneous disturbances are also computed and turn out to be up to 0.16% compared to the changes caused by tide-generating potential. The current study compares the influences of lateral inhomogeneity with rotation and ocean tide loading. The results indicate that the rotation and ellipticity on tidal gravity are the most dominant factors, the ocean tide loading is the moderate one, and the lateral inhomogeneity in the mantle has the least significant influence. Moreover, an anti-correlation between the effective elastic thickness and gravimetric factor change caused by lateral inhomogeneity is found, implying that it is difficult to generate tidal response at regions with high rigidity. We argue that the gravimetric factor change can be used as an effective indicator for lithospheric strength.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"31 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01907-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lateral inhomogeneity in the Earth’s mantle affects the tidal response. The current study reformulates the expressions for estimating the lateral inhomogeneity effects on tidal gravity with respect to the unperturbed Earth and supplements some critical derivation process to enhance the methodology. The effects of lateral inhomogeneity are calculated using several real Earth models. By considering the collective contributions of seismic wave velocity disturbances and density disturbance, the global theoretical changes of semidiurnal gravimetric factor are obtained, which vary from − 0.22 to 0.22% compared to those in a layered Earth model, about 1/2 of the ellipticity’s effect. The gravity changes caused by lateral-inhomogeneous disturbances are also computed and turn out to be up to 0.16% compared to the changes caused by tide-generating potential. The current study compares the influences of lateral inhomogeneity with rotation and ocean tide loading. The results indicate that the rotation and ellipticity on tidal gravity are the most dominant factors, the ocean tide loading is the moderate one, and the lateral inhomogeneity in the mantle has the least significant influence. Moreover, an anti-correlation between the effective elastic thickness and gravimetric factor change caused by lateral inhomogeneity is found, implying that it is difficult to generate tidal response at regions with high rigidity. We argue that the gravimetric factor change can be used as an effective indicator for lithospheric strength.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics