Vacancy Engineering on MnSe Cathode Enables High‐Rate and Stable Zinc‐Ion Storage

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-12-26 DOI:10.1002/adfm.202419720
Wenping Zhong, Rui Zhao, Yirong Zhu, Yuting Xu, Wenhao Chen, Chao Peng
{"title":"Vacancy Engineering on MnSe Cathode Enables High‐Rate and Stable Zinc‐Ion Storage","authors":"Wenping Zhong, Rui Zhao, Yirong Zhu, Yuting Xu, Wenhao Chen, Chao Peng","doi":"10.1002/adfm.202419720","DOIUrl":null,"url":null,"abstract":"Manganese selenide (MnSe), as a newly emerged manganese‐based chalcogenide, has recently been considered as a potential cathode for aqueous Zn‐based energy storage due to its many merits. Nevertheless, its unsatisfactory kinetic performance and cycling stability, along with its controversial energy storage mechanism, hinder its commercial application. Herein, the MnSe microspheres with Se‐rich vacancies (V<jats:sub>Se</jats:sub>‐MnSe) are synthesized, and employed as a cathode for Zn‐ion batteries/capacitors (ZIBs/ZICs) for the first time. Density functional theory (DFT) calculations and kinetic analyses illustrate that vacancy engineering of MnSe enhances the active sites, improves the electronic conductivity and ion transport, and reduces the adsorption energy and diffusion energy barriers of H<jats:sup>+</jats:sup> and Zn<jats:sup>2+</jats:sup>, endowing the V<jats:sub>Se</jats:sub>‐MnSe cathode of ZIBs with significantly enhanced specific capacity, rate capability, and cycling stability. Interestingly, ex situ tests confirm the stable existence of V<jats:sub>Se</jats:sub>‐MnSe during the whole charge/discharge process and store energy with the first H<jats:sup>+</jats:sup> insertion and subsequent H<jats:sup>+</jats:sup>/Zn<jats:sup>2+</jats:sup> co‐insertion. More encouragingly, the V<jats:sub>Se</jats:sub>‐MnSe//porous carbon (PC) ZICs exhibit an ultrahigh energy density (178.0 Wh kg<jats:sup>−1</jats:sup>), a high power density (10 kW kg<jats:sup>−1</jats:sup>), and eminent cyclic stability (up to 10000 cycles). This research offers an efficient strategy for designing and developing high‐performance manganese‐based chalcogenides and sheds new insights into their energy storage mechanisms.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"58 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419720","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese selenide (MnSe), as a newly emerged manganese‐based chalcogenide, has recently been considered as a potential cathode for aqueous Zn‐based energy storage due to its many merits. Nevertheless, its unsatisfactory kinetic performance and cycling stability, along with its controversial energy storage mechanism, hinder its commercial application. Herein, the MnSe microspheres with Se‐rich vacancies (VSe‐MnSe) are synthesized, and employed as a cathode for Zn‐ion batteries/capacitors (ZIBs/ZICs) for the first time. Density functional theory (DFT) calculations and kinetic analyses illustrate that vacancy engineering of MnSe enhances the active sites, improves the electronic conductivity and ion transport, and reduces the adsorption energy and diffusion energy barriers of H+ and Zn2+, endowing the VSe‐MnSe cathode of ZIBs with significantly enhanced specific capacity, rate capability, and cycling stability. Interestingly, ex situ tests confirm the stable existence of VSe‐MnSe during the whole charge/discharge process and store energy with the first H+ insertion and subsequent H+/Zn2+ co‐insertion. More encouragingly, the VSe‐MnSe//porous carbon (PC) ZICs exhibit an ultrahigh energy density (178.0 Wh kg−1), a high power density (10 kW kg−1), and eminent cyclic stability (up to 10000 cycles). This research offers an efficient strategy for designing and developing high‐performance manganese‐based chalcogenides and sheds new insights into their energy storage mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硒化锰(MnSe)作为一种新出现的锰基铬化物,由于其诸多优点,最近被认为是一种潜在的锌基水性储能阴极。然而,其动力学性能和循环稳定性不尽如人意,储能机制也存在争议,这些都阻碍了其商业化应用。本文合成了富含Se空位的MnSe微球(VSe-MnSe),并首次将其用作锌离子电池/电容器(ZIBs/ZICs)的阴极。密度泛函理论(DFT)计算和动力学分析表明,MnSe 的空位工程增强了活性位点,改善了电子传导性和离子传输,降低了 H+ 和 Zn2+ 的吸附能和扩散能垒,从而使 ZIBs 的 VSe-MnSe 阴极具有显著增强的比容量、速率能力和循环稳定性。有趣的是,原位测试证实了 VSe-MnSe 在整个充放电过程中的稳定存在,并通过第一次 H+ 插入和随后的 H+/Zn2+ 共插入储存能量。更令人鼓舞的是,VSe-MnSe/多孔碳(PC)ZIC 显示出超高的能量密度(178.0 Wh kg-1)、高功率密度(10 kW kg-1)和卓越的循环稳定性(高达 10000 次循环)。这项研究为设计和开发高性能锰基铬化物提供了一种有效的策略,并对其储能机制提出了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Direct Ink Writing of Single-Crystal-Assembled Perovskite Thick Films for High-Performance X-ray Flat-Panel Detectors Nanoscale Metal-Organic Framework Leveraging Water, Oxygen, and Hydron Peroxide to Generate Reactive Oxygen Species for Cancer Therapy Review of Ferroelectric Materials and Devices toward Ultralow Voltage Operation Type-Transformational BioHJzyme Enabled by Composition Modulation-Mediated Energy Band Engineering for Diabetic Infectious Wound Healing Antagonistic Two-Color Control of Polymer Network Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1