Machine Learning Prediction of Physicochemical Properties in Lithium-Ion Battery Electrolytes With Active Learning Applied to Graph Neural Networks

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-12-26 DOI:10.1002/jcc.70009
Debojyoti Das, Debdutta Chakraborty
{"title":"Machine Learning Prediction of Physicochemical Properties in Lithium-Ion Battery Electrolytes With Active Learning Applied to Graph Neural Networks","authors":"Debojyoti Das,&nbsp;Debdutta Chakraborty","doi":"10.1002/jcc.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate prediction of physicochemical properties, such as electronic energy, enthalpy, free energy, and average vibrational frequencies, is critical for optimizing lithium-ion battery (LIB) performance. Traditional methods like density functional theory (DFT) are computationally expensive and inefficient for large-scale screening. In this study, we apply active learning on top of graph neural networks (GNNs) to efficiently predict these properties. By focusing on uncertain data points, active learning reduces training data size while maintaining high accuracy. Applied to the LIBE and MPcules datasets, the model achieved an R-squared (<i>R</i><sup>2</sup>) values of 0.9977 with a mean absolute error (MAE) of 9.66 Ha for electronic energy and an <i>R</i><sup>2</sup> values of 0.957 with an MAE of 13.94 cm<sup>−1</sup> for average vibrational frequencies. SHapley Additive exPlanations (SHAP) provided insights into key features influencing predictions, such as atomic number and spin multiplicity. This approach enhances both predictive accuracy and model interpretability, offering a scalable solution for LIB electrolyte discovery.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of physicochemical properties, such as electronic energy, enthalpy, free energy, and average vibrational frequencies, is critical for optimizing lithium-ion battery (LIB) performance. Traditional methods like density functional theory (DFT) are computationally expensive and inefficient for large-scale screening. In this study, we apply active learning on top of graph neural networks (GNNs) to efficiently predict these properties. By focusing on uncertain data points, active learning reduces training data size while maintaining high accuracy. Applied to the LIBE and MPcules datasets, the model achieved an R-squared (R2) values of 0.9977 with a mean absolute error (MAE) of 9.66 Ha for electronic energy and an R2 values of 0.957 with an MAE of 13.94 cm−1 for average vibrational frequencies. SHapley Additive exPlanations (SHAP) provided insights into key features influencing predictions, such as atomic number and spin multiplicity. This approach enhances both predictive accuracy and model interpretability, offering a scalable solution for LIB electrolyte discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池电解质物理化学性质的机器学习预测与主动学习应用于图神经网络
准确预测锂离子电池的物理化学性质,如电子能量、焓、自由能和平均振动频率,对于优化锂离子电池(LIB)的性能至关重要。传统的方法,如密度泛函理论(DFT)是计算昂贵和低效的大规模筛选。在本研究中,我们在图神经网络(gnn)的基础上应用主动学习来有效地预测这些特性。通过关注不确定的数据点,主动学习减少了训练数据的大小,同时保持了较高的准确性。将该模型应用于LIBE和MPcules数据集,电子能量的R2值为0.9977,平均绝对误差(MAE)为9.66 Ha;平均振动频率的R2值为0.957,平均绝对误差(MAE)为13.94 cm−1。SHapley加性解释(SHAP)提供了对影响预测的关键特征的见解,例如原子序数和自旋多重性。这种方法提高了预测准确性和模型可解释性,为锂离子电池电解质的发现提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Dual-Branch Graph Neural Network for Predicting Molecular Odors and Discovering the Relationship Between Functional Groups and Odors Infrared Spectrum and UV-Triggered Transformations of Matrix-Isolated Meta-Fluorothiophenol Supported by Ground and Excited State Theoretical Calculations Extending Chemoinformatics Techniques With JMolecular Energy: A Robust CDK-Based Force Field Library Mechanistic Study of LIDT Reduction in KH2PO4 With Yi Predicted by Density Functional Theory First Principles Global Optimization Method From Parallel Tempering Molecular Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1