Unraveling the Impact of CNT on Electrode Expansion in Silicon-based Lithium-ion Batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-12-26 DOI:10.1016/j.ensm.2024.103983
Yujin Kim, Moonjin Kim, Namhyung Kim, Hyungyeon Cha, Seokjin Kim, Jaekyung Sung, Jaephil Cho
{"title":"Unraveling the Impact of CNT on Electrode Expansion in Silicon-based Lithium-ion Batteries","authors":"Yujin Kim, Moonjin Kim, Namhyung Kim, Hyungyeon Cha, Seokjin Kim, Jaekyung Sung, Jaephil Cho","doi":"10.1016/j.ensm.2024.103983","DOIUrl":null,"url":null,"abstract":"A high-capacity silicon-based anode has been used in commercial lithium-ion batteries as a form of an addition to an existing graphite electrode for the realization of high energy density. However, under industrial conditions using high-density electrodes (&gt;1.6 g cc<sup>–1</sup>, low electrode porosity), the electrode expansion becomes more severe, which engenders the decrease in energy density and safety issues. Carbon nanotubes (CNTs) have emerged as promising additives due to their outstanding electrical conductivity and mechanical strength. Despite their potential, the chemo-mechanical and electrochemical roles of CNTs in silicon-based anodes are not fully understood. Herein, we identify the mechanisms by which CNTs enhance silicon-based anodes with constructive comparison of commercial conductive agents. Our results show that CNTs alleviate strain-induced interfacial reactions and control the growth of the solid electrolyte interphase (SEI) layer during cycling. CNTs provide mechanical reinforcement, reducing particle-level cracking and enhancing electron pathways, which lowers surface tension and decelerates crack propagation. This significantly diminishes electrode pulverization and swelling. As a result, we observe a stable cycling stability (Cycle life: 94.6% for 100 cycles) of silicon-graphite composite (SGC) in 1 Ah pouch-type full cell. Remarkably, the SGC blended with graphite showed better electrochemical performance at low temperature cycling, fast-charging cycling and rate capability compared to the conventional graphite.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"147 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103983","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A high-capacity silicon-based anode has been used in commercial lithium-ion batteries as a form of an addition to an existing graphite electrode for the realization of high energy density. However, under industrial conditions using high-density electrodes (>1.6 g cc–1, low electrode porosity), the electrode expansion becomes more severe, which engenders the decrease in energy density and safety issues. Carbon nanotubes (CNTs) have emerged as promising additives due to their outstanding electrical conductivity and mechanical strength. Despite their potential, the chemo-mechanical and electrochemical roles of CNTs in silicon-based anodes are not fully understood. Herein, we identify the mechanisms by which CNTs enhance silicon-based anodes with constructive comparison of commercial conductive agents. Our results show that CNTs alleviate strain-induced interfacial reactions and control the growth of the solid electrolyte interphase (SEI) layer during cycling. CNTs provide mechanical reinforcement, reducing particle-level cracking and enhancing electron pathways, which lowers surface tension and decelerates crack propagation. This significantly diminishes electrode pulverization and swelling. As a result, we observe a stable cycling stability (Cycle life: 94.6% for 100 cycles) of silicon-graphite composite (SGC) in 1 Ah pouch-type full cell. Remarkably, the SGC blended with graphite showed better electrochemical performance at low temperature cycling, fast-charging cycling and rate capability compared to the conventional graphite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Unraveling the Impact of CNT on Electrode Expansion in Silicon-based Lithium-ion Batteries A novel water-reducer-based hydrogel electrolyte for robust and flexible Zn-I2 battery Manipulating thermodynamics and crystal structure modulates P2/O3 biphasic layered oxide cathodes for sodium-ion batteries Constructing Multiphase Junction towards Layer-structured Cathode Material for Enhanced Sodium ion Batteries Combination of high-throughput phase field modeling and machine learning to study the performance evolution during lithium battery cycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1