Breaking Solvation Dominance Effect Enabled by Ion–Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-12-26 DOI:10.1007/s40820-024-01592-1
Shengwei Dong, Lingfeng Shi, Shenglu Geng, Yanbin Ning, Cong Kang, Yan Zhang, Ziwei Liu, Jiaming Zhu, Zhuomin Qiang, Lin Zhou, Geping Yin, Dalong Li, Tiansheng Mu, Shuaifeng Lou
{"title":"Breaking Solvation Dominance Effect Enabled by Ion–Dipole Interaction Toward Long-Spanlife Silicon Oxide Anodes in Lithium-Ion Batteries","authors":"Shengwei Dong,&nbsp;Lingfeng Shi,&nbsp;Shenglu Geng,&nbsp;Yanbin Ning,&nbsp;Cong Kang,&nbsp;Yan Zhang,&nbsp;Ziwei Liu,&nbsp;Jiaming Zhu,&nbsp;Zhuomin Qiang,&nbsp;Lin Zhou,&nbsp;Geping Yin,&nbsp;Dalong Li,&nbsp;Tiansheng Mu,&nbsp;Shuaifeng Lou","doi":"10.1007/s40820-024-01592-1","DOIUrl":null,"url":null,"abstract":"<div><p>Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li<sup>+</sup>) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li<sup>+</sup> solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li<sup>+</sup> solvation structure, enriched with FEC and TFSI<sup>−</sup>, facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO<sub>2</sub> full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01592-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01592-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Micrometer-sized silicon oxide (SiO) anodes encounter challenges in large-scale applications due to significant volume expansion during the alloy/de-alloy process. Herein, an innovative deep eutectic electrolyte derived from succinonitrile is introduced to enhance the cycling stability of SiO anodes. Density functional theory calculations validate a robust ion–dipole interaction between lithium ions (Li+) and succinonitrile (SN). The cosolvent fluoroethylene carbonate (FEC) optimizes the Li+ solvation structure in the SN-based electrolyte with its weakly solvating ability. Molecular dynamics simulations investigate the regulating mechanism of ion–dipole and cation–anion interaction. The unique Li+ solvation structure, enriched with FEC and TFSI, facilitates the formation of an inorganic–organic composite solid electrolyte interphase on SiO anodes. Micro-CT further detects the inhibiting effect on the SiO volume expansion. As a result, the SiO|LiCoO2 full cells exhibit excellent electrochemical performance in deep eutectic-based electrolytes. This work presents an effective strategy for extending the cycle life of SiO anodes by designing a new SN-based deep eutectic electrolyte.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子-偶极相互作用对长寿命锂离子电池氧化硅阳极的破溶剂化优势效应
微米尺寸的氧化硅(SiO)阳极在大规模应用中遇到挑战,因为在合金/脱合金过程中体积会显著膨胀。本文引入了一种创新的琥珀腈深共晶电解质,以提高SiO阳极的循环稳定性。密度泛函理论计算证实了锂离子(Li+)和琥珀腈(SN)之间存在强大的离子-偶极相互作用。助溶剂氟乙烯碳酸酯(FEC)以其弱溶剂化能力优化了sn基电解质中Li+的溶剂化结构。分子动力学模拟研究了离子-偶极子和阳离子-阴离子相互作用的调节机制。独特的Li+溶剂化结构,富含FEC和TFSI−,有利于在SiO阳极上形成无机-有机复合固体电解质界面。Micro-CT进一步检测了对SiO体积膨胀的抑制作用。结果表明,SiO|LiCoO2全电池在深共晶电解质中表现出优异的电化学性能。本文通过设计一种新型sn基深共晶电解液,提出了延长SiO阳极循环寿命的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
N-methyl-2-pyrrolidone
阿拉丁
lithium bis(trifluoromethyl sulfonyl)imide
阿拉丁
lithium difluoro(oxalate)borate
阿拉丁
fluoroethylene carbonate
阿拉丁
succinonitrile
阿拉丁
N-methyl-2-pyrrolidone
阿拉丁
lithium bis(trifluoromethyl sulfonyl)imide
阿拉丁
lithium difluoro(oxalate)borate
阿拉丁
fluoroethylene carbonate
阿拉丁
succinonitrile
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
V–Ti-Based Solid Solution Alloys for Solid-State Hydrogen Storage A Review of MAX Series Materials: From Diversity, Synthesis, Prediction, Properties Oriented to Functions Boosting Alcohol Oxidation Electrocatalysis with Multifactorial Engineered Pd1/Pt Single-Atom Alloy-BiOx Adatoms Surface All-in-One: A Multifunctional Composite Biomimetic Cryogel for Coagulation Disorder Hemostasis and Infected Diabetic Wound Healing Correction: Transition Metal Carbonitride MXenes Anchored with Pt Sub-nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1