Achieving over 20 % Efficiency in Laminated HTM-Free Carbon Electrode Perovskite Solar Cells through In Situ Interface Reconstruction

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-26 DOI:10.1002/anie.202420687
Guopeng Huang, Taiyang Zhang, Weidong Lin, Lixia Qin, Prof. Shi-Zhao Kang, Prof. Xiangqing Li
{"title":"Achieving over 20 % Efficiency in Laminated HTM-Free Carbon Electrode Perovskite Solar Cells through In Situ Interface Reconstruction","authors":"Guopeng Huang,&nbsp;Taiyang Zhang,&nbsp;Weidong Lin,&nbsp;Lixia Qin,&nbsp;Prof. Shi-Zhao Kang,&nbsp;Prof. Xiangqing Li","doi":"10.1002/anie.202420687","DOIUrl":null,"url":null,"abstract":"<p>Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (&lt;16.5 %) remains lower compared to c-PSCs with printed carbon pastes (&gt;20 %), primarily due to poor interfacial contact between the perovskite and carbon layers. Herein, we report a chemical-mechanical driven in situ interface reconstruction strategy to solve such interface contact issues. The in situ interface reconstruction is firstly triggered by methylammonium chloride (MACl) surface treatment to chemically activate the film and then mechanically laminate the carbon electrode onto the softened perovskite film under heating. The perovskite film undergoes in situ regrowth and the carbon film starts to cure simultaneously, dynamically reconstructing the perovskite/carbon electrode interface. A tighter and conformal contact is achieved, greatly facilitating the carrier transport and extract. Ultimately, a champion PCE of 20.31 % is achieved with enhanced stability. Our in situ interface reconstruction strategy which is combinating the chemical and mechanical process offers a new choice for the further design of low-cost and efficient HTM-free c-PSCs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 9","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202420687","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (<16.5 %) remains lower compared to c-PSCs with printed carbon pastes (>20 %), primarily due to poor interfacial contact between the perovskite and carbon layers. Herein, we report a chemical-mechanical driven in situ interface reconstruction strategy to solve such interface contact issues. The in situ interface reconstruction is firstly triggered by methylammonium chloride (MACl) surface treatment to chemically activate the film and then mechanically laminate the carbon electrode onto the softened perovskite film under heating. The perovskite film undergoes in situ regrowth and the carbon film starts to cure simultaneously, dynamically reconstructing the perovskite/carbon electrode interface. A tighter and conformal contact is achieved, greatly facilitating the carrier transport and extract. Ultimately, a champion PCE of 20.31 % is achieved with enhanced stability. Our in situ interface reconstruction strategy which is combinating the chemical and mechanical process offers a new choice for the further design of low-cost and efficient HTM-free c-PSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过原位界面重建实现无htm层压碳电极钙钛矿太阳能电池20%以上的效率
在钙钛矿薄膜上制备独立碳电极薄膜是一种很有前途的制备无碳电极钙钛矿太阳能电池(c-PSCs)的方法,通过将碳电极和钙钛矿层形成过程解耦,提供了更大的灵活性。然而,叠层无htm的c-PSCs的功率转换效率(PCE) (<16.5%)仍然低于印刷碳糊的c-PSCs (>20%),这主要是由于钙钛矿和碳层之间的界面接触不良。在此,我们报告了一种化学-机械驱动的原位界面重建策略来解决这种界面接触问题。首先通过甲基氯化铵(MACl)表面处理触发原位界面重建,化学激活膜,然后在加热下将碳电极机械层压在软化的钙钛矿膜上。钙钛矿膜在原位再生的同时,碳膜开始固化,动态重构钙钛矿/碳电极界面。实现了更紧密的保形接触,极大地促进了载体的运输和提取。最终,PCE达到了20.31%的冠军水平,并增强了稳定性。我们的原位界面重建策略是化学和机械过程的结合,为进一步设计低成本、高效的无htm c- psc提供了新的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Synthetic Microbial Ecosystems for Stable Flow Biocatalysis The Nonadiabatic Nature of the Substituent Effects in Azobenzene Piezo-Activated Metal-Free Donor-Acceptor Photocatalytic Overall Water Splitting System Toward Highly-Efficient Simultaneous H2 and H2O2 Production Atomic‐Mesoscale Synergy in Amorphous Iridium Oxide Catalysts for Proton Exchange Membrane Water Electrolysis Practical Enantioselective Hydrogenation of Aryl Enamides Catalyzed by Cobalt‐Monodentate Phosphoramidites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1