Observed Sprite Streamer Growth Rates

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-12-25 DOI:10.1029/2024gl112537
H. C. Stenbaek-Nielsen, M. G. McHarg, N. Y. Liu
{"title":"Observed Sprite Streamer Growth Rates","authors":"H. C. Stenbaek-Nielsen, M. G. McHarg, N. Y. Liu","doi":"10.1029/2024gl112537","DOIUrl":null,"url":null,"abstract":"Sprites have been recorded at ∼100,000 frames per second. One hundred and sixty five essentially vertically propagating streamers, 110 downward and 55 upward, have been selected for analysis. The initial velocity increase is exponential as predicted by theory. Growth rates could be determined for 76 downward and 46 upward propagating streamers, and, in individual streamers, they are independent of altitude. The average growth rate increases from 1.6 10<sup>3</sup> in C-sprites, to 2.6 10<sup>3</sup> in carrots, to 8.4 10<sup>3</sup>/s in jellyfish sprites. With a streamer model the driving electric field can be derived. Evaluating the field at 70 km altitude, we find fields of 98 (0.45 E<sub>k</sub>), 121 (0.56 E<sub>k</sub>), and 188 (0.87 E<sub>k</sub>) V/m for the 3 sprite types, indicating that jellyfish sprites are the most energetic. High-speed imaging can provide streamer growth rates and combined with a streamer model, the electric fields associated with various sprite features can be investigated.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"32 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112537","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sprites have been recorded at ∼100,000 frames per second. One hundred and sixty five essentially vertically propagating streamers, 110 downward and 55 upward, have been selected for analysis. The initial velocity increase is exponential as predicted by theory. Growth rates could be determined for 76 downward and 46 upward propagating streamers, and, in individual streamers, they are independent of altitude. The average growth rate increases from 1.6 103 in C-sprites, to 2.6 103 in carrots, to 8.4 103/s in jellyfish sprites. With a streamer model the driving electric field can be derived. Evaluating the field at 70 km altitude, we find fields of 98 (0.45 Ek), 121 (0.56 Ek), and 188 (0.87 Ek) V/m for the 3 sprite types, indicating that jellyfish sprites are the most energetic. High-speed imaging can provide streamer growth rates and combined with a streamer model, the electric fields associated with various sprite features can be investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Observed Sprite Streamer Growth Rates Rapid Intensification of Hurricane Ian in Relation to Anomalously Warm Subsurface Water on the Wide Continental Shelf Enhanced Charging and Mobilization of Photoemitting Dust Particles in a Low-Density Plasma Revealing the Cape Verde Hotspot Track Across the Great Lakes Wave Resonance Induced Intensification of Mixed Rossby-Gravity Waves by Extratropical Forcing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1