{"title":"Chiral Extensions of Regular Toroids","authors":"Antonio Montero, Micael Toledo","doi":"10.1007/s00493-024-00132-0","DOIUrl":null,"url":null,"abstract":"<p>Abstract polytopes are combinatorial objects that generalise geometric objects such as convex polytopes, maps on surfaces and tilings of the space. Chiral polytopes are those abstract polytopes that admit full combinatorial rotational symmetry but do not admit reflections. In this paper we build chiral polytopes whose facets (maximal faces) are isomorphic to a prescribed regular cubic tessellation of the <i>n</i>-dimensional torus (<span>\\(n \\geqslant 2\\)</span>). As a consequence, we prove that for every <span>\\(d \\geqslant 3\\)</span> there exist infinitely many chiral <i>d</i>-polytopes.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"153 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00132-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract polytopes are combinatorial objects that generalise geometric objects such as convex polytopes, maps on surfaces and tilings of the space. Chiral polytopes are those abstract polytopes that admit full combinatorial rotational symmetry but do not admit reflections. In this paper we build chiral polytopes whose facets (maximal faces) are isomorphic to a prescribed regular cubic tessellation of the n-dimensional torus (\(n \geqslant 2\)). As a consequence, we prove that for every \(d \geqslant 3\) there exist infinitely many chiral d-polytopes.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.