Elena Sevostianova, Dawn VanLeeuwen, Matteo Serena, Rossana Sallenave, Bernd Leinauer
{"title":"Performance and recovery of turfgrasses irrigated with varying crop coefficients","authors":"Elena Sevostianova, Dawn VanLeeuwen, Matteo Serena, Rossana Sallenave, Bernd Leinauer","doi":"10.1002/csc2.21433","DOIUrl":null,"url":null,"abstract":"Deficit irrigation is a water conserving practice that involves watering below an estimated evapotranspiration (ET) replacement level. Research is limited to comparing cool‐season (CS) and warm‐season (WS) turfgrass varieties grown in arid regions under varying deficit irrigation replacement levels. This study investigated the effects of five levels of reference evapotranspiration for short grass (ET<jats:sub>OS</jats:sub>) replacement (55%, 70%, 85%, 100%, and 115%) on the performance and fall recovery of several turfgrasses in the southwestern United States. Three years of field research evaluated green cover and visual quality of three CS Kentucky bluegrass (<jats:italic>Poa pratensis</jats:italic> L.) (four cultivars), tall fescue [<jats:italic>Schedonorus arundinaceus</jats:italic> (Schreb.)] (three cultivars), and perennial ryegrass (<jats:italic>Lolium perenne</jats:italic> L.) (three cultivars), and two WS turfgrasses bermudagrass (<jats:italic>Cynodon dactylon</jats:italic> L.) (three cultivars) and buffalograss <jats:italic>Buchloe dactyloides</jats:italic> (two cultivars). CS grasses required higher ET<jats:sub>OS</jats:sub> replacement than WS grasses to maintain acceptable quality (1–9, ≥6 = minimum acceptable) and coverage. Among CS grasses, Barserati Kentucky bluegrass maintained the best quality and green cover under deficit irrigation and demonstrated the most consistent ability to recover. Notably, bermudagrass performed well under deficit irrigation, maintaining acceptable visual quality and better green cover than CS species like Kentucky bluegrass and tall fescue at lower irrigation levels. Overall, there were significant differences among cultivars, demonstrating the importance of the selection process in drought tolerance. These findings support the promotion of drought‐resistant WS grasses to conserve water in arid regions without compromising turfgrass functionality. Future research should focus on variable and seasonal ET<jats:sub>OS</jats:sub> for irrigation of turfgrasses and estimating irrigation requirements.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"62 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21433","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Deficit irrigation is a water conserving practice that involves watering below an estimated evapotranspiration (ET) replacement level. Research is limited to comparing cool‐season (CS) and warm‐season (WS) turfgrass varieties grown in arid regions under varying deficit irrigation replacement levels. This study investigated the effects of five levels of reference evapotranspiration for short grass (ETOS) replacement (55%, 70%, 85%, 100%, and 115%) on the performance and fall recovery of several turfgrasses in the southwestern United States. Three years of field research evaluated green cover and visual quality of three CS Kentucky bluegrass (Poa pratensis L.) (four cultivars), tall fescue [Schedonorus arundinaceus (Schreb.)] (three cultivars), and perennial ryegrass (Lolium perenne L.) (three cultivars), and two WS turfgrasses bermudagrass (Cynodon dactylon L.) (three cultivars) and buffalograss Buchloe dactyloides (two cultivars). CS grasses required higher ETOS replacement than WS grasses to maintain acceptable quality (1–9, ≥6 = minimum acceptable) and coverage. Among CS grasses, Barserati Kentucky bluegrass maintained the best quality and green cover under deficit irrigation and demonstrated the most consistent ability to recover. Notably, bermudagrass performed well under deficit irrigation, maintaining acceptable visual quality and better green cover than CS species like Kentucky bluegrass and tall fescue at lower irrigation levels. Overall, there were significant differences among cultivars, demonstrating the importance of the selection process in drought tolerance. These findings support the promotion of drought‐resistant WS grasses to conserve water in arid regions without compromising turfgrass functionality. Future research should focus on variable and seasonal ETOS for irrigation of turfgrasses and estimating irrigation requirements.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.