Temporal changes in taxon abundances are positively correlated but poorly predicted at the global scale

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2024-12-27 DOI:10.1111/ecog.07195
Gavia Lertzman‐Lepofsky, Aleksandra J. Dolezal, Mia Tayler Waters, Alexandre Fuster‐Calvo, Emily N. Black, Stephanie Flaman, Sam Straus, Ryan E. Langendorf, Isaac Eckert, Sophia Fan, Haley A. Branch, Nathalie Isabelle Chardon, Courtney G. Collins
{"title":"Temporal changes in taxon abundances are positively correlated but poorly predicted at the global scale","authors":"Gavia Lertzman‐Lepofsky, Aleksandra J. Dolezal, Mia Tayler Waters, Alexandre Fuster‐Calvo, Emily N. Black, Stephanie Flaman, Sam Straus, Ryan E. Langendorf, Isaac Eckert, Sophia Fan, Haley A. Branch, Nathalie Isabelle Chardon, Courtney G. Collins","doi":"10.1111/ecog.07195","DOIUrl":null,"url":null,"abstract":"Linking changes in taxon abundance to biotic and abiotic drivers over space and time is critical for understanding biodiversity responses to global change. Furthermore, deciphering temporal trends in relationships among taxa, including correlated abundance changes (e.g. synchrony), can facilitate predictions of future shifts. However, what drives these correlated changes over large scales are complex and understudied, impeding our ability to predict shifts in ecological communities. We used two global datasets containing abundance time‐series (BioTIME) and biotic interactions (GloBI) to quantify correlations among yearly changes in the abundance of pairs of geographically proximal taxa (genus pairs). We used a hierarchical linear model and cross‐validation to test the overall magnitude, direction and predictive accuracy of correlated abundance changes among genera at the global scale. We then tested how correlated abundance changes are influenced by latitude, biotic interactions, disturbance and time‐series length while accounting for differences among studies and taxonomic categories. We found that abundance changes between genus pairs are, on average, positively correlated over time, suggesting synchrony at the global scale. Furthermore, we found that abundance changes are more positively correlated with longer time‐series, with known biotic interactions and in disturbed habitats. However, the magnitude of these ecological drivers alone are relatively weak, with model predictive accuracy increasing approximately two‐fold with the inclusion of study identity and taxonomic category. This suggests that while patterns in abundance correlations are shaped by ecological drivers at the global scale, these drivers have limited utility in forecasting changes in abundances among unknown taxa or in the context of future global change. Our study indicates that including taxonomy and known ecological drivers can improve predictions of biodiversity loss over large spatial and temporal scales, but also that idiosyncrasies of different studies continue to weaken our ability to make global predictions.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"12 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07195","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Linking changes in taxon abundance to biotic and abiotic drivers over space and time is critical for understanding biodiversity responses to global change. Furthermore, deciphering temporal trends in relationships among taxa, including correlated abundance changes (e.g. synchrony), can facilitate predictions of future shifts. However, what drives these correlated changes over large scales are complex and understudied, impeding our ability to predict shifts in ecological communities. We used two global datasets containing abundance time‐series (BioTIME) and biotic interactions (GloBI) to quantify correlations among yearly changes in the abundance of pairs of geographically proximal taxa (genus pairs). We used a hierarchical linear model and cross‐validation to test the overall magnitude, direction and predictive accuracy of correlated abundance changes among genera at the global scale. We then tested how correlated abundance changes are influenced by latitude, biotic interactions, disturbance and time‐series length while accounting for differences among studies and taxonomic categories. We found that abundance changes between genus pairs are, on average, positively correlated over time, suggesting synchrony at the global scale. Furthermore, we found that abundance changes are more positively correlated with longer time‐series, with known biotic interactions and in disturbed habitats. However, the magnitude of these ecological drivers alone are relatively weak, with model predictive accuracy increasing approximately two‐fold with the inclusion of study identity and taxonomic category. This suggests that while patterns in abundance correlations are shaped by ecological drivers at the global scale, these drivers have limited utility in forecasting changes in abundances among unknown taxa or in the context of future global change. Our study indicates that including taxonomy and known ecological drivers can improve predictions of biodiversity loss over large spatial and temporal scales, but also that idiosyncrasies of different studies continue to weaken our ability to make global predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分类群丰度的时间变化呈正相关,但在全球尺度上预测较差
将分类群丰度的变化与生物和非生物驱动因素在空间和时间上的联系起来,对于理解生物多样性对全球变化的响应至关重要。此外,破译分类群之间关系的时间趋势,包括相关丰度变化(如同步性),可以促进对未来变化的预测。然而,在大尺度上驱动这些相关变化的原因是复杂的,研究不足,阻碍了我们预测生态群落变化的能力。我们使用两个包含丰度时间序列(BioTIME)和生物相互作用(GloBI)的全球数据集来量化地理上近端分类群(属对)对丰度的年变化之间的相关性。我们使用层次线性模型和交叉验证来检验全球尺度上各属间相关丰度变化的总体幅度、方向和预测精度。然后,我们测试了纬度、生物相互作用、干扰和时间序列长度对相关丰度变化的影响,同时考虑了研究和分类类别之间的差异。我们发现,平均而言,属对之间的丰度变化随时间呈正相关,表明在全球范围内是同步的。此外,我们发现丰度变化与较长的时间序列、已知的生物相互作用和受干扰的栖息地呈正相关。然而,这些生态驱动因素本身的重要性相对较弱,随着研究身份和分类类别的纳入,模型预测精度提高了大约两倍。这表明,虽然丰度相关性的模式是由全球尺度上的生态驱动因素塑造的,但这些驱动因素在预测未知分类群的丰度变化或未来全球变化方面的效用有限。我们的研究表明,包括分类学和已知的生态驱动因素可以提高对大时空尺度上生物多样性损失的预测,但不同研究的特质继续削弱我们做出全球预测的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Drivers of amphibian species richness in European ponds Testing the abundant centre hypothesis in a seabird: higher energy expenditure at the wintering range centre does not reduce reproductive success Deep-sea food-web structure at South Sandwich Islands (Southern Ocean): net primary production as a main driver for interannual changes Resource redistribution mediated by hydrological connectivity modulates vegetation response to aridification in drylands Integrating food webs in species distribution models can improve ecological niche estimation and predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1