Quantum Confined Luminescence in Two Dimensions

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-12-26 DOI:10.1021/acsphotonics.4c01739
Saiphaneendra Bachu, Fatimah Habis, Benjamin Huet, Steffi Y. Woo, Leixin Miao, Danielle Reifsnyder Hickey, Gwangwoo Kim, Nicholas Trainor, Kenji Watanabe, Takashi Taniguchi, Deep Jariwala, Joan M. Redwing, Yuanxi Wang, Mathieu Kociak, Luiz H. G. Tizei, Nasim Alem
{"title":"Quantum Confined Luminescence in Two Dimensions","authors":"Saiphaneendra Bachu, Fatimah Habis, Benjamin Huet, Steffi Y. Woo, Leixin Miao, Danielle Reifsnyder Hickey, Gwangwoo Kim, Nicholas Trainor, Kenji Watanabe, Takashi Taniguchi, Deep Jariwala, Joan M. Redwing, Yuanxi Wang, Mathieu Kociak, Luiz H. G. Tizei, Nasim Alem","doi":"10.1021/acsphotonics.4c01739","DOIUrl":null,"url":null,"abstract":"Achieving localized light emission from monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) embedded in the matrix of another TMD has been theoretically proposed but not experimentally proven. In this study, we used cathodoluminescence performed in a scanning transmission electron microscope to unambiguously resolve localized light emission from 2D monolayer MoSe<sub>2</sub> nanodots of varying sizes embedded in a monolayer WSe<sub>2</sub> matrix. We observed that the light emission strongly depends on the nanodot size, wherein the emission is dominated by MoSe<sub>2</sub> excitons in dots larger than 85 nm and by MoSe<sub>2</sub>/WSe<sub>2</sub> interface excitons below 50 nm. Interestingly, at extremely small dot sizes (&lt;10 nm), the electron energy levels in the nanodot become quantized, as demonstrated by a striking blue-shift in interface exciton emission, thus inducing quantum confined luminescence. These results establish controllable light emission from spatially confined 2D nanodots, which holds potential to be generalized to other 2D systems toward future nanophotonic applications.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"4 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01739","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving localized light emission from monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) embedded in the matrix of another TMD has been theoretically proposed but not experimentally proven. In this study, we used cathodoluminescence performed in a scanning transmission electron microscope to unambiguously resolve localized light emission from 2D monolayer MoSe2 nanodots of varying sizes embedded in a monolayer WSe2 matrix. We observed that the light emission strongly depends on the nanodot size, wherein the emission is dominated by MoSe2 excitons in dots larger than 85 nm and by MoSe2/WSe2 interface excitons below 50 nm. Interestingly, at extremely small dot sizes (<10 nm), the electron energy levels in the nanodot become quantized, as demonstrated by a striking blue-shift in interface exciton emission, thus inducing quantum confined luminescence. These results establish controllable light emission from spatially confined 2D nanodots, which holds potential to be generalized to other 2D systems toward future nanophotonic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维量子受限发光
从嵌入在另一层二维过渡金属二硫化物(TMDs)基体中的单层二维过渡金属二硫化物(TMDs)中实现局域发光已经在理论上提出,但尚未得到实验证明。在这项研究中,我们使用扫描透射电子显微镜进行阴极发光,以明确地分辨嵌入单层WSe2基质中不同尺寸的二维单层MoSe2纳米点的局部发光。我们观察到,光发射强烈依赖于纳米点的尺寸,其中大于85 nm的点以MoSe2激子为主,而小于50 nm的点则以MoSe2/WSe2界面激子为主。有趣的是,在极小的点尺寸(10nm)下,纳米点中的电子能级变得量子化,正如界面激子发射中显著的蓝移所证明的那样,从而诱导量子受限发光。这些结果建立了空间受限的二维纳米点的可控光发射,具有推广到其他二维系统的潜力,以实现未来的纳米光子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Topologically Protected Edge States in Time Photonic Crystals with Chiral Symmetry High-Efficiency Solar Hybrid Photovoltaic/Thermal System Enabled by Ultrathin Asymmetric Fabry–Perot Cavity Regulation of Additive-Cs+ Interactions for Efficient Cesium Copper Iodide Light-Emitting Diodes Breaking the Size Limit of Room-Temperature Prepared Lead Sulfide Colloidal Quantum Dots for High-Performance Short-Wave Infrared Optoelectronics Segmented SiPM Readout for Cherenkov Time-of-Flight Positron Emission Tomography Detectors Based on Bismuth Germanate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1