{"title":"Analysis strategy of contamination source using chemical fingerprint information based on GC-HRMS: a case study of landfill leachate","authors":"Qian Zhang, Ninghui Song, Hang Xu","doi":"10.1016/j.watres.2024.123067","DOIUrl":null,"url":null,"abstract":"With the increasing prevalence of emerging contaminants (ECs) in the environment, gaining a deeper understanding of the chemical information pertaining to the contamination source is a crucial step toward effective prevention and control of these ECs. This study presents a novel strategy for analyzing the chemical information of contamination sources using gas chromatography-high resolution mass spectrometry (GC-HRMS) and demonstrates it on landfill leachate, a common and representative environmental contamination source. Initially, a non-targeted screening approach using HRMS was used to characterize a total of 5344 organic compounds with identification confidence levels 1 and 2 in 14 landfill leachate samples. Leveraging this as a base data set, the similarity analysis was first performed, and the classification fingerprints exhibited a pronounced level of similarity. Second, 169 characteristic marker contaminants with important and significant differences were identified in the 3 groups of landfill leachate with different solid waste compositions (mostly kitchen waste, mostly plastic & daily chemical product waste, and proportion average) by difference analysis. Finally, 101 hazardous chemicals (HCs) were screened in the data set. The results demonstrated that a class of contamination source exhibited certain common characteristics, while different groups of samples had their own distinct contamination signatures. This work offers a unique perspective on the interpretation of chemical information from contamination sources, aiming to provide a valuable reference for environmental pollution management.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"30 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123067","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing prevalence of emerging contaminants (ECs) in the environment, gaining a deeper understanding of the chemical information pertaining to the contamination source is a crucial step toward effective prevention and control of these ECs. This study presents a novel strategy for analyzing the chemical information of contamination sources using gas chromatography-high resolution mass spectrometry (GC-HRMS) and demonstrates it on landfill leachate, a common and representative environmental contamination source. Initially, a non-targeted screening approach using HRMS was used to characterize a total of 5344 organic compounds with identification confidence levels 1 and 2 in 14 landfill leachate samples. Leveraging this as a base data set, the similarity analysis was first performed, and the classification fingerprints exhibited a pronounced level of similarity. Second, 169 characteristic marker contaminants with important and significant differences were identified in the 3 groups of landfill leachate with different solid waste compositions (mostly kitchen waste, mostly plastic & daily chemical product waste, and proportion average) by difference analysis. Finally, 101 hazardous chemicals (HCs) were screened in the data set. The results demonstrated that a class of contamination source exhibited certain common characteristics, while different groups of samples had their own distinct contamination signatures. This work offers a unique perspective on the interpretation of chemical information from contamination sources, aiming to provide a valuable reference for environmental pollution management.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.