Novel perspectives on multiple-peak diurnal convection over a tropical mountainous island from idealized large-eddy simulations

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-12-26 DOI:10.1038/s41612-024-00884-y
Yu-Hsiu Wang, Wei-Ting Chen, Chien-Ming Wu
{"title":"Novel perspectives on multiple-peak diurnal convection over a tropical mountainous island from idealized large-eddy simulations","authors":"Yu-Hsiu Wang, Wei-Ting Chen, Chien-Ming Wu","doi":"10.1038/s41612-024-00884-y","DOIUrl":null,"url":null,"abstract":"Two robust peaks in the diurnal evolution of orographically-locked precipitation are simulated in large-eddy simulations with an idealized ocean-plain-mountain topography. The ensemble experiment design is guided by sounding statistics from summertime afternoon thunderstorms in Taiwan to obtain realistic variability of free-tropospheric moisture associated with the intensity of the summertime subtropical high. The convection in the first peak is directly modulated by convective available potential energy, while the convection in the second peak is associated with low-level moist static energy (MSE) transport by the island-scale (40-km) local circulation, producing more extreme rainfall. When the initial free troposphere is drier, the convection in the second peak is strengthened. Both the environmental adjustments by the first peak and local circulation development contribute to the sensitivity of the second peak to free-tropospheric moisture. This work highlights the critical roles of convection-environment interaction and upstream MSE supply in enhancing extreme diurnal precipitation over complex topography.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-14"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00884-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00884-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two robust peaks in the diurnal evolution of orographically-locked precipitation are simulated in large-eddy simulations with an idealized ocean-plain-mountain topography. The ensemble experiment design is guided by sounding statistics from summertime afternoon thunderstorms in Taiwan to obtain realistic variability of free-tropospheric moisture associated with the intensity of the summertime subtropical high. The convection in the first peak is directly modulated by convective available potential energy, while the convection in the second peak is associated with low-level moist static energy (MSE) transport by the island-scale (40-km) local circulation, producing more extreme rainfall. When the initial free troposphere is drier, the convection in the second peak is strengthened. Both the environmental adjustments by the first peak and local circulation development contribute to the sensitivity of the second peak to free-tropospheric moisture. This work highlights the critical roles of convection-environment interaction and upstream MSE supply in enhancing extreme diurnal precipitation over complex topography.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从理想大涡模拟对热带山地岛屿多峰日对流的新观点
在理想的海洋-平原-山地地形的大涡模拟中,模拟了地形锁定降水日演化的两个强峰。本实验以台湾夏季午后雷暴的探空数据为指导,拟合出与夏季副热带高压强度相关的对流层自由水汽的真实变率。第一个高峰的对流直接受到对流有效势能的调制,而第二个高峰的对流则与岛尺度(40 km)局地环流的低层湿静态能(MSE)输送有关,产生更极端的降雨。当初始自由对流层较干燥时,第二峰的对流增强。第一个峰值的环境调整和局地环流的发展都有助于第二个峰值对自由对流层湿度的敏感性。这项工作强调了对流-环境相互作用和上游MSE供应在复杂地形上增强极端日降水中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Unusual and persistent easterlies restrained the 2023/24 El Niño development after a triple-dip La Niña Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning High prediction skill of decadal tropical cyclone variability in the North Atlantic and East Pacific in the met office decadal prediction system DePreSys4 Multifaceted changes in water availability with a warmer climate Vertical and spatial differences in ozone formation sensitivities under different ozone pollution levels in eastern Chinese cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1