Bending the Straight into Curved: A Tree-Ring-Inspired Fully Printed Omnidirectional Triboelectric Nanogenerator with Ring-Nested Structure for All-In-One Wearable Self-Powered Systems and IoT Smart Packaging
{"title":"Bending the Straight into Curved: A Tree-Ring-Inspired Fully Printed Omnidirectional Triboelectric Nanogenerator with Ring-Nested Structure for All-In-One Wearable Self-Powered Systems and IoT Smart Packaging","authors":"Yaoli Wang, Guodong Liu, Qingjun Meng, Xiaohong Jiang, Xinyi Li, Hanbin Liu, Zhijian Li","doi":"10.1016/j.nanoen.2024.110631","DOIUrl":null,"url":null,"abstract":"The free-standing triboelectric nanogenerator (FS-TENG), known for its simple structure and a universal external friction layer, has gained attention in wearable electronics and IoT smart packaging. Nevertheless, the design of parallel electrodes limits sliding energy conversion from multiple angles. In this paper, inspired by the tree ring structure, a structurally simple omnidirectional triboelectric nanogenerator (O-TENG) was designed. By the \"bending the straight into curved\" approach, the traditional parallel straight electrodes of the FS-TENG are transformed into a ring-nested electrode structure, achieving sliding energy harvesting and electrical signal generation from arbitrary angles. The fully printed O-TENG by optimizing its dielectric properties for the friction layer, achieving a maximum open-circuit voltage and short-circuit current of 232.45<!-- --> <!-- -->V and 1.37<!-- --> <!-- -->µA, respectively. Thanks to the symmetrical ring-nested structure, the relative standard deviations of the open-circuit voltage and short-circuit current across multiple angles were only 2.63% and 4.52%. When integrated with micro-supercapacitors and printed on fabric, the O-TENG-powered system successfully ran a digital watch after 1006<!-- --> <!-- -->s of motion. Furthermore, the system integrated a printed electrochromic device (ECD) to develop a motion-interactive optical modulation system, where the ECD changed from light blue to dark blue after 398<!-- --> <!-- -->s of arm friction during running. Finally, the O-TENG, printed as a sensor tag on packaging, monitors multi-angle sliding motion. Therefore, the bio-inspired simplified O-TENG, associated with its fully printed fabrication and integration method, show great potential for novelty developments of wearable electronics and IoT smart packaging.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"65 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110631","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The free-standing triboelectric nanogenerator (FS-TENG), known for its simple structure and a universal external friction layer, has gained attention in wearable electronics and IoT smart packaging. Nevertheless, the design of parallel electrodes limits sliding energy conversion from multiple angles. In this paper, inspired by the tree ring structure, a structurally simple omnidirectional triboelectric nanogenerator (O-TENG) was designed. By the "bending the straight into curved" approach, the traditional parallel straight electrodes of the FS-TENG are transformed into a ring-nested electrode structure, achieving sliding energy harvesting and electrical signal generation from arbitrary angles. The fully printed O-TENG by optimizing its dielectric properties for the friction layer, achieving a maximum open-circuit voltage and short-circuit current of 232.45 V and 1.37 µA, respectively. Thanks to the symmetrical ring-nested structure, the relative standard deviations of the open-circuit voltage and short-circuit current across multiple angles were only 2.63% and 4.52%. When integrated with micro-supercapacitors and printed on fabric, the O-TENG-powered system successfully ran a digital watch after 1006 s of motion. Furthermore, the system integrated a printed electrochromic device (ECD) to develop a motion-interactive optical modulation system, where the ECD changed from light blue to dark blue after 398 s of arm friction during running. Finally, the O-TENG, printed as a sensor tag on packaging, monitors multi-angle sliding motion. Therefore, the bio-inspired simplified O-TENG, associated with its fully printed fabrication and integration method, show great potential for novelty developments of wearable electronics and IoT smart packaging.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.