Toxicity and environmental fate of the less toxic chiral neonicotinoid pesticides: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2024-12-27 DOI:10.1007/s10311-024-01808-1
Zenglong Chen, Lilin Zhao, Shanshan Kang, Rock Keey Liew, Eric Lichtfouse
{"title":"Toxicity and environmental fate of the less toxic chiral neonicotinoid pesticides: a review","authors":"Zenglong Chen, Lilin Zhao, Shanshan Kang, Rock Keey Liew, Eric Lichtfouse","doi":"10.1007/s10311-024-01808-1","DOIUrl":null,"url":null,"abstract":"<p>Neonicotinoids represent 25% of the insecticidal market and are essential for crop production, yet traditional neonicotinoids are toxic to most pollinators, which are also essential for food production. This issue may be addressed by the use of some chiral neonicotinoid isomers, which are much less toxic. Here, we review the chiral neonicotinoids dinotefuran, sulfoxaflor, cycloxaprid, and paichongding, with focus on their chiral characteristics, configuration stability, biological activity, ecological toxicology, and environmental fate. Isomeric separation of chiral neonicotinoids can be achieved by chromatography. The dinotefuran <i>R</i> isomer is less toxic than the <i>S</i> isomer to honeybees and earthworms by a factor of 2.7–145.9, with similar control efficiency of common agricultural pests. The insecticidal activity of (5<i>R</i>,7<i>S</i>)-paichongding are up to 20.1 times higher than that of other isomers, and it is absorbed fastest by crop roots and tends to be preferentially degraded and mineralized in soils. Therefore, formulations containing<i> R</i>-dinotefuran or (5<i>R</i>,7<i>S</i>)-paichongding could decrease ecological damage without compromising food production. On the other hand, it has not been possible to synthesize chiral isomers of sulfoxaflor and cycloxaprid, owing to the instability of their monomers in polar solvents.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"331 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01808-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neonicotinoids represent 25% of the insecticidal market and are essential for crop production, yet traditional neonicotinoids are toxic to most pollinators, which are also essential for food production. This issue may be addressed by the use of some chiral neonicotinoid isomers, which are much less toxic. Here, we review the chiral neonicotinoids dinotefuran, sulfoxaflor, cycloxaprid, and paichongding, with focus on their chiral characteristics, configuration stability, biological activity, ecological toxicology, and environmental fate. Isomeric separation of chiral neonicotinoids can be achieved by chromatography. The dinotefuran R isomer is less toxic than the S isomer to honeybees and earthworms by a factor of 2.7–145.9, with similar control efficiency of common agricultural pests. The insecticidal activity of (5R,7S)-paichongding are up to 20.1 times higher than that of other isomers, and it is absorbed fastest by crop roots and tends to be preferentially degraded and mineralized in soils. Therefore, formulations containing R-dinotefuran or (5R,7S)-paichongding could decrease ecological damage without compromising food production. On the other hand, it has not been possible to synthesize chiral isomers of sulfoxaflor and cycloxaprid, owing to the instability of their monomers in polar solvents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Underestimated sequestration of soil organic carbon in China Proteomics technologies in toxicity screening: a review Destruction of chemical weapons stockpiles in the Russian Federation: a review Functional clothing, an overlooked source of persistent textile fibers in the global microplastic pollution Micro-scale mapping of soil organic carbon using soft X-ray spectromicroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1