Ningfeng Ke, Fangcheng Si, Hongliang Ma, Qiang Gao, Gengwu Ge, Wei Liu, Jie Ding, Wendong Zhang, Xuge Fan
{"title":"Fully Flexible Humidity Sensor with Fast Response and High Responsivity Based on rGO/MoS2 for Human Respiration Monitoring and Nontouch Switches","authors":"Ningfeng Ke, Fangcheng Si, Hongliang Ma, Qiang Gao, Gengwu Ge, Wei Liu, Jie Ding, Wendong Zhang, Xuge Fan","doi":"10.1021/acsami.4c18757","DOIUrl":null,"url":null,"abstract":"Humidity sensors have been widely used to monitor humidity in daily life, agriculture fields, and so on. However, conventional sensors are not suitable for wearable devices because of their large dimensions and rigid substrates. Hence, we report a fast response, highly sensitive, and fully flexible humidity sensor on a PI substrate based on the composite material of reduced graphene oxide (rGO)/MoS<sub>2</sub>, with a response time of 0.65 s and a sensitivity of 96.7% in the relative humidity range of 11% RH–95% RH. A fully flexible wearable device was realized by integrating the prepared flexible humidity sensor with a flexible printed circuit, which was successfully applied for human breathing monitoring, motion monitoring, and nontouch switches. These results show that the rGO/MoS<sub>2</sub> composite is a good candidate for humidity sensing and has the potential to be used in the fields of wearable devices and nontouch switching.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"98 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18757","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Humidity sensors have been widely used to monitor humidity in daily life, agriculture fields, and so on. However, conventional sensors are not suitable for wearable devices because of their large dimensions and rigid substrates. Hence, we report a fast response, highly sensitive, and fully flexible humidity sensor on a PI substrate based on the composite material of reduced graphene oxide (rGO)/MoS2, with a response time of 0.65 s and a sensitivity of 96.7% in the relative humidity range of 11% RH–95% RH. A fully flexible wearable device was realized by integrating the prepared flexible humidity sensor with a flexible printed circuit, which was successfully applied for human breathing monitoring, motion monitoring, and nontouch switches. These results show that the rGO/MoS2 composite is a good candidate for humidity sensing and has the potential to be used in the fields of wearable devices and nontouch switching.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.