Supplemental irrigation in the humid Pampean region: Effects on soil salinity, physical properties, nutrients and organic carbon

Mariano Santiago Iseas, Claudia Mabel Sainato, Catalina Romay
{"title":"Supplemental irrigation in the humid Pampean region: Effects on soil salinity, physical properties, nutrients and organic carbon","authors":"Mariano Santiago Iseas, Claudia Mabel Sainato, Catalina Romay","doi":"10.1016/j.still.2024.106421","DOIUrl":null,"url":null,"abstract":"The use of supplemental irrigation could stabilise crop yields in the Pampean region in the face of climate variability. However, inadequate management of this practice could compromise soil quality. The effect supplemental irrigation on soil salinity and sodicity, nutrients, organic carbon and some physical properties was studied on a farm, with production of grains and oilseeds, in the Pampean region of Argentina. Although the groundwater used for irrigation is classified as sodium bicarbonate type, it has no risk of soil salinity and sodicity. This work was carried out on 7 plots with different conditions of soil type, soil cover and recovery time after last irrigation. Significant increases in salinity, sodicity and alkalinity due to supplemental irrigation were observed. Phosphates content (PO<ce:inf loc=\"post\">4</ce:inf>) and organic carbon (OC) slightly decreased, while nitrate content (NO<ce:inf loc=\"post\">3</ce:inf>) did not change significantly. It is assumed that PO<ce:inf loc=\"post\">4</ce:inf> may have decreased due to increased leaching and/or consumption by the irrigated crop, while the change in OC may be related to an increased rate of organic decomposition. Changes in physical properties were less important. Slight increases in aggregate stability (AS), bulk density (BD) and loss of clay content were observed. It may be hypothesised that the observed joint increase in salinity and sodicity may stabilise the flocculation-dispersion processes that give structure and aggregation to the soil, thus neutralising the effects of irrigation on physical properties.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2024.106421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of supplemental irrigation could stabilise crop yields in the Pampean region in the face of climate variability. However, inadequate management of this practice could compromise soil quality. The effect supplemental irrigation on soil salinity and sodicity, nutrients, organic carbon and some physical properties was studied on a farm, with production of grains and oilseeds, in the Pampean region of Argentina. Although the groundwater used for irrigation is classified as sodium bicarbonate type, it has no risk of soil salinity and sodicity. This work was carried out on 7 plots with different conditions of soil type, soil cover and recovery time after last irrigation. Significant increases in salinity, sodicity and alkalinity due to supplemental irrigation were observed. Phosphates content (PO4) and organic carbon (OC) slightly decreased, while nitrate content (NO3) did not change significantly. It is assumed that PO4 may have decreased due to increased leaching and/or consumption by the irrigated crop, while the change in OC may be related to an increased rate of organic decomposition. Changes in physical properties were less important. Slight increases in aggregate stability (AS), bulk density (BD) and loss of clay content were observed. It may be hypothesised that the observed joint increase in salinity and sodicity may stabilise the flocculation-dispersion processes that give structure and aggregation to the soil, thus neutralising the effects of irrigation on physical properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supplemental irrigation in the humid Pampean region: Effects on soil salinity, physical properties, nutrients and organic carbon Changes in mechanical and resilience characteristics of degraded arable land under long-term grassland management Plastic film mulching with nitrogen application activates rhizosphere microbial nitrification and dissimilatory nitrate reduction in the Loess Plateau Space-time mapping of soil organic carbon through remote sensing and machine learning How do different ant species mediate CH4 fluxes in slash-burn tropical forest soils?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1