Badra Souhila Guendouzi , Samir Ouchani , Hiba Al Assaad , Madeleine El Zaher
{"title":"Ensuring the federation correctness: Formal verification of Federated Learning in industrial cyber-physical systems","authors":"Badra Souhila Guendouzi , Samir Ouchani , Hiba Al Assaad , Madeleine El Zaher","doi":"10.1016/j.future.2024.107675","DOIUrl":null,"url":null,"abstract":"<div><div>In industry 4.0, Industrial Cyber–Physical Systems (<span>ICPS</span>) integrate industrial machines with computer control and data analysis. Federated Learning (FL) improves this by enabling collaborative machine learning and improvement while maintaining data privacy. This method improves the security, and intelligence of industrial processes. FL-based frameworks proposed in the literature do not perform rigorous validation of collaborators’ behaviors, especially with regard to reliability and operational correctness. In contrast, non-FL-based cyber–physical systems have already been verified in the literature using formal methods. Therefore, there is a significant gap in the application of these verification techniques to FL-based systems. To fill this gap, we explore the possibility of introducing formal verification into FL-based cyber–physical systems, starting with our <span><strong>FedGA-Meta</strong></span> published framework. Thus, our research focuses on expanding our <span><strong>FedGA-Meta</strong></span> framework in the context of Industry 4.0, this paper delves into a comprehensive validation of the framework’s operational reliability and correctness within <span>ICPS</span> based on FL. To achieve this, we employ Timed Computation Tree Logic (TCTL) for the precise specification of system requirements, coupled with Labeled Transition Systems (LTS) to construct the <span>ICPS</span> semantic in detail. Through the usage of Uppaal for both simulation and model-checking purposes, we rigorously test the framework under a variety of operational scenarios. This approach allows us to confirm the system’s reliability and correctness, ensuring that the <span><strong>FedGA-Meta</strong></span> framework operates effectively and as intended within the demanding environments of Industry 4.0.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107675"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24006393","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In industry 4.0, Industrial Cyber–Physical Systems (ICPS) integrate industrial machines with computer control and data analysis. Federated Learning (FL) improves this by enabling collaborative machine learning and improvement while maintaining data privacy. This method improves the security, and intelligence of industrial processes. FL-based frameworks proposed in the literature do not perform rigorous validation of collaborators’ behaviors, especially with regard to reliability and operational correctness. In contrast, non-FL-based cyber–physical systems have already been verified in the literature using formal methods. Therefore, there is a significant gap in the application of these verification techniques to FL-based systems. To fill this gap, we explore the possibility of introducing formal verification into FL-based cyber–physical systems, starting with our FedGA-Meta published framework. Thus, our research focuses on expanding our FedGA-Meta framework in the context of Industry 4.0, this paper delves into a comprehensive validation of the framework’s operational reliability and correctness within ICPS based on FL. To achieve this, we employ Timed Computation Tree Logic (TCTL) for the precise specification of system requirements, coupled with Labeled Transition Systems (LTS) to construct the ICPS semantic in detail. Through the usage of Uppaal for both simulation and model-checking purposes, we rigorously test the framework under a variety of operational scenarios. This approach allows us to confirm the system’s reliability and correctness, ensuring that the FedGA-Meta framework operates effectively and as intended within the demanding environments of Industry 4.0.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.