{"title":"Secondary organophosphate esters: A review of environmental source, occurrence, and human exposure","authors":"Xinkai Wang, Yuan Xue, Xianming Zhang, Jinlong Wang, Kaihui Xia, Wei Liu, Zhouqing Xie, Runzeng Liu, Qifan Liu","doi":"10.1080/10643389.2024.2399968","DOIUrl":null,"url":null,"abstract":"Organophosphate esters (OPEs), a group of synthetic chemicals widely used as flame retardants and plasticizers, have garnered significant international attention due to their adverse effects on the environment and human health. Traditionally, environmental OPEs are thought to originate <i>via</i> direct emissions. Recent evidence suggests that OPEs also have an important indirect source: The transformation of organophosphite antioxidants (another group of mass-produced commercial chemicals) to OPEs <i>via</i> atmospheric chemical reactions. This indirect source can lead to the formation of secondary OPEs (SOPEs) such as tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), which are widely distributed in the global environment and have distinct physiochemical and toxic properties compared with the well-studied primary OPEs. Therefore, there is an urgent need to obtain a strong fundamental knowledge of SOPEs. This review summarizes the current understanding of the sources, environmental occurrence, human exposure pathways, and environmental hazards of SOPEs. They have been detected in various environmental matrices such as air, soil, and indoor dust, as well as in consumer products such as face masks and foodstuffs. Notably, the reported SOPE concentrations are higher than most primary OPEs. Human exposure pathways related to SOPEs include dietary intake, dust ingestion, hand-to-mouth contact, dermal absorption, and air inhalation. Additionally, risk evaluation indicates that SOPEs are more persistent in the environment and in organisms, and may pose a higher risk than the primary OPEs. Finally, by summarizing the current advances and remaining challenges for the investigation of SOPEs, we propose future research directions regarding their environmental monitoring needs, transformation chemistry, environmental impact, and health effect.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2024.2399968","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Organophosphate esters (OPEs), a group of synthetic chemicals widely used as flame retardants and plasticizers, have garnered significant international attention due to their adverse effects on the environment and human health. Traditionally, environmental OPEs are thought to originate via direct emissions. Recent evidence suggests that OPEs also have an important indirect source: The transformation of organophosphite antioxidants (another group of mass-produced commercial chemicals) to OPEs via atmospheric chemical reactions. This indirect source can lead to the formation of secondary OPEs (SOPEs) such as tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), which are widely distributed in the global environment and have distinct physiochemical and toxic properties compared with the well-studied primary OPEs. Therefore, there is an urgent need to obtain a strong fundamental knowledge of SOPEs. This review summarizes the current understanding of the sources, environmental occurrence, human exposure pathways, and environmental hazards of SOPEs. They have been detected in various environmental matrices such as air, soil, and indoor dust, as well as in consumer products such as face masks and foodstuffs. Notably, the reported SOPE concentrations are higher than most primary OPEs. Human exposure pathways related to SOPEs include dietary intake, dust ingestion, hand-to-mouth contact, dermal absorption, and air inhalation. Additionally, risk evaluation indicates that SOPEs are more persistent in the environment and in organisms, and may pose a higher risk than the primary OPEs. Finally, by summarizing the current advances and remaining challenges for the investigation of SOPEs, we propose future research directions regarding their environmental monitoring needs, transformation chemistry, environmental impact, and health effect.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.