Ionic liquid interfacial modification of magnetic metal-organic framework enhances laccase stability and catalytic performance in degrading phenolic pollutants
Wei Zhang, Qianru Wang, Jifei Song, Min Zhang, Yi Hu
{"title":"Ionic liquid interfacial modification of magnetic metal-organic framework enhances laccase stability and catalytic performance in degrading phenolic pollutants","authors":"Wei Zhang, Qianru Wang, Jifei Song, Min Zhang, Yi Hu","doi":"10.1016/j.psep.2024.12.083","DOIUrl":null,"url":null,"abstract":"Laccase is capable of catalyzing a wide range of substrates and is a potential candidate for pollutant biodegradation. However, its application is limited by the free enzyme, poor stability, and difficulties in recycling. In this paper, a novel bio-enzymatic preparation was constructed by using imidazolium-based ionic liquids as surface modifiers to modify magnetic metal-organic frameworks and immobilize laccase by covalent binding. The prepared immobilized enzyme (laccase-ILs-MIL-100-Fe<ce:inf loc=\"post\">3</ce:inf>O<ce:inf loc=\"post\">4</ce:inf>) exhibited remarkable thermal stability, retaining 72.7 % activity at 70 ℃, whereas the free laccase experienced almost complete inactivation, whereas the enzyme in the free laccase almost lost its activity. After 6 times of reuse, the laccase-ILs-MIL-100-Fe<ce:inf loc=\"post\">3</ce:inf>O<ce:inf loc=\"post\">4</ce:inf> still retained nearly 60 % of its activity and possessed good reusability. Notably, the immobilized enzyme achieves nearly complete removal of phenolic pollutants within 8 h and maintains over 50 % removal efficiency even at high concentrations after 12 h. More importantly, the immobilized system could be recycled and reused for the treatment of pollutants. The removal efficiency of 74.3 % was maintained after 7 rounds of cycling. This paper presents an effective strategy for the development of novel biologics and provides valuable insights into advancing efficient enzyme immobilization technology and the practical application of immobilized enzymes in wastewater treatment.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"12 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2024.12.083","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Laccase is capable of catalyzing a wide range of substrates and is a potential candidate for pollutant biodegradation. However, its application is limited by the free enzyme, poor stability, and difficulties in recycling. In this paper, a novel bio-enzymatic preparation was constructed by using imidazolium-based ionic liquids as surface modifiers to modify magnetic metal-organic frameworks and immobilize laccase by covalent binding. The prepared immobilized enzyme (laccase-ILs-MIL-100-Fe3O4) exhibited remarkable thermal stability, retaining 72.7 % activity at 70 ℃, whereas the free laccase experienced almost complete inactivation, whereas the enzyme in the free laccase almost lost its activity. After 6 times of reuse, the laccase-ILs-MIL-100-Fe3O4 still retained nearly 60 % of its activity and possessed good reusability. Notably, the immobilized enzyme achieves nearly complete removal of phenolic pollutants within 8 h and maintains over 50 % removal efficiency even at high concentrations after 12 h. More importantly, the immobilized system could be recycled and reused for the treatment of pollutants. The removal efficiency of 74.3 % was maintained after 7 rounds of cycling. This paper presents an effective strategy for the development of novel biologics and provides valuable insights into advancing efficient enzyme immobilization technology and the practical application of immobilized enzymes in wastewater treatment.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.