Gravity Change and Its Relation to Land Subsidence and Underground Water Table Variation at Kerman, Iran

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS pure and applied geophysics Pub Date : 2024-11-14 DOI:10.1007/s00024-024-03605-x
Hamideh Cheraghi, Jacques Hinderer, Shahab Ebrahimi, Zahra Mousavi, Seyed Abdoreza Saadat, Siavash Arabi, Morteza Sedighi
{"title":"Gravity Change and Its Relation to Land Subsidence and Underground Water Table Variation at Kerman, Iran","authors":"Hamideh Cheraghi,&nbsp;Jacques Hinderer,&nbsp;Shahab Ebrahimi,&nbsp;Zahra Mousavi,&nbsp;Seyed Abdoreza Saadat,&nbsp;Siavash Arabi,&nbsp;Morteza Sedighi","doi":"10.1007/s00024-024-03605-x","DOIUrl":null,"url":null,"abstract":"<div><p>The gravity value at the surface of the Earth can be changed due to land subsidence and underground water depletion. Absolute gravity measurements show a gravity increase of ~ 169 µgal at Kerman station in southeastern Iran during 2004–2017. InSAR vertical map (2017–2019) reveals displacement rates of -3.5 cm/year at the Kerman site and a maximum of -25 cm/year at the center of the plain. Kerman GPS measurements (2011–2018) indicate -4.3 cm/year of vertical displacement rate. The geometrical contribution of the subsidence to the gravity variation at this site is + 140.2 and + 172.2 μgal using InSAR and GPS, respectively. In situ measurements of the groundwater table show a 17 cm/year depletion rate, leading to minimum and maximum values of − 27.8 and − 46.4 µgal in the induced gravity change assuming a 30–50% porosity range. The sum of induced hydrological and geometrical gravity changes is found to be smaller than the observed gravity variation at Kerman station, underlying a variable subsidence rate in time. The decrease in subsidence rate, observed at some urban leveling benchmarks, is probably due to the westward development of Kerman city, the lack of a proper sewage system, as well as the decrease in water extraction because of land use change. Assuming that the subsidence rate was larger at the beginning of the absolute gravity measurement period and decreases with time, most of the gravity increase at the Kerman station can be explained by subsidence with only a small water mass change contribution.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 12","pages":"3443 - 3461"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03605-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The gravity value at the surface of the Earth can be changed due to land subsidence and underground water depletion. Absolute gravity measurements show a gravity increase of ~ 169 µgal at Kerman station in southeastern Iran during 2004–2017. InSAR vertical map (2017–2019) reveals displacement rates of -3.5 cm/year at the Kerman site and a maximum of -25 cm/year at the center of the plain. Kerman GPS measurements (2011–2018) indicate -4.3 cm/year of vertical displacement rate. The geometrical contribution of the subsidence to the gravity variation at this site is + 140.2 and + 172.2 μgal using InSAR and GPS, respectively. In situ measurements of the groundwater table show a 17 cm/year depletion rate, leading to minimum and maximum values of − 27.8 and − 46.4 µgal in the induced gravity change assuming a 30–50% porosity range. The sum of induced hydrological and geometrical gravity changes is found to be smaller than the observed gravity variation at Kerman station, underlying a variable subsidence rate in time. The decrease in subsidence rate, observed at some urban leveling benchmarks, is probably due to the westward development of Kerman city, the lack of a proper sewage system, as well as the decrease in water extraction because of land use change. Assuming that the subsidence rate was larger at the beginning of the absolute gravity measurement period and decreases with time, most of the gravity increase at the Kerman station can be explained by subsidence with only a small water mass change contribution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伊朗克尔曼地区重力变化及其与地面沉降和地下水位变化的关系
地表重力值会因地面沉降和地下水枯竭而发生变化。绝对重力测量显示,2004-2017年伊朗东南部克尔曼站的重力增加了~ 169µgal。InSAR垂直地图(2017-2019)显示,克尔曼站点的位移率为-3.5 cm/年,平原中心的位移率最高为-25 cm/年。Kerman GPS测量(2011-2018)表明垂直位移率为-4.3 cm/年。在InSAR和GPS观测下,沉降对该站点重力变化的几何贡献分别为+ 140.2和+ 172.2 μgal。地下水位的原位测量表明,在孔隙率为30-50%的情况下,地下水的年耗损率为17 cm,导致重力变化的最小值和最大值分别为- 27.8µgal和- 46.4µgal。诱导水文和几何重力变化的总和小于克尔曼站观测到的重力变化,表明沉降速率随时间变化。在一些城市水平基准上观察到的沉降率下降可能是由于克尔曼市向西发展,缺乏适当的污水系统,以及土地利用变化导致的取水量减少。假设沉降率在绝对重力测量周期开始时较大,随时间的推移而减小,则Kerman站的大部分重力增加可以用沉降来解释,而水质量变化的贡献很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
期刊最新文献
Relationship between TTI and Various Thunderstorm Related Parameters over Kerala, India Frequency-dependent Layered Q Model and Attenuation Tomography of the Himachal North-West Himalaya, India: Insight to Explore Crustal Variation Adaptive Window Approach for Curie Depth Calculation Based on Modified Centroid Method and the Application in the South China Block Modeling the Ventilation of the Vortex Periphery for Anticyclonic Quasi-Permanent Lofoten Vortex Stable Distribution of Fractional Fluctuations of Well Log Data in Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1