Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2024-12-29 DOI:10.1007/s13143-024-00385-1
Seong-Ho Hong, Joohyun Lee, Jong-Jin Baik
{"title":"Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions","authors":"Seong-Ho Hong,&nbsp;Joohyun Lee,&nbsp;Jong-Jin Baik","doi":"10.1007/s13143-024-00385-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the microphysical characteristics of snowfall in Seoul, South Korea and their changes with meteorological conditions are examined using about 6-year observation data from a Parsivel disdrometer. The snow particle size distribution (PSD) exhibits convex-down shapes, being better represented by gamma distributions than exponential distributions. As snowfall rate increases, the snow PSD broadens and its peak rises. The changes in gamma PSD parameters with snowfall rate differ between the mean PSD and 1-min PSDs. The volume-weighted mean diameter <i>D</i><sub>m</sub> much more rapidly increases with snowfall rate in comparison with <i>D</i><sub>m</sub> in Beijing, China and Pyeongchang, South Korea, suggesting the relative importance of aggregation in Seoul. 77% of snowfall in Seoul occurs when northwesterly blows at the 850-hPa level. This snowfall is associated with west-high/east-low pressure patterns, large air–sea temperature differences (~ 19 °C), and shallow (≤ 2.5 km) precipitation systems, suggesting a large contribution of sea-effect snowfall from the Yellow Sea. The northwesterly-type snowfall with lower temperatures (≤ 25th percentile, COLD) and with higher temperatures (≥ 75th percentile, WARM) at the 850-hPa level is compared in the same intensity range of 0.5–1 mm h<sup>−1</sup>. Compared with the WARM snowfall, the COLD snowfall has relatively broad PSDs and less-rimed snow particles. The COLD snowfall is associated with relatively large wind shear, small static stability, low temperatures of − 21 to − 9 °C, and low humidity in the lower atmosphere, which is attributed to relatively strong northwesterly resulting in relatively strong cold and dry advection. This implies that enhanced aggregation by stronger turbulence and dendritic growths can contribute to the broader PSDs and that weakened riming for the lower temperatures might be associated with the less-rimed snow particles.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"61 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-024-00385-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the microphysical characteristics of snowfall in Seoul, South Korea and their changes with meteorological conditions are examined using about 6-year observation data from a Parsivel disdrometer. The snow particle size distribution (PSD) exhibits convex-down shapes, being better represented by gamma distributions than exponential distributions. As snowfall rate increases, the snow PSD broadens and its peak rises. The changes in gamma PSD parameters with snowfall rate differ between the mean PSD and 1-min PSDs. The volume-weighted mean diameter Dm much more rapidly increases with snowfall rate in comparison with Dm in Beijing, China and Pyeongchang, South Korea, suggesting the relative importance of aggregation in Seoul. 77% of snowfall in Seoul occurs when northwesterly blows at the 850-hPa level. This snowfall is associated with west-high/east-low pressure patterns, large air–sea temperature differences (~ 19 °C), and shallow (≤ 2.5 km) precipitation systems, suggesting a large contribution of sea-effect snowfall from the Yellow Sea. The northwesterly-type snowfall with lower temperatures (≤ 25th percentile, COLD) and with higher temperatures (≥ 75th percentile, WARM) at the 850-hPa level is compared in the same intensity range of 0.5–1 mm h−1. Compared with the WARM snowfall, the COLD snowfall has relatively broad PSDs and less-rimed snow particles. The COLD snowfall is associated with relatively large wind shear, small static stability, low temperatures of − 21 to − 9 °C, and low humidity in the lower atmosphere, which is attributed to relatively strong northwesterly resulting in relatively strong cold and dry advection. This implies that enhanced aggregation by stronger turbulence and dendritic growths can contribute to the broader PSDs and that weakened riming for the lower temperatures might be associated with the less-rimed snow particles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
韩国首尔降雪的微物理特征及其随气象条件的变化
本文利用Parsivel disdrometer近6年的观测资料,研究了韩国首尔地区降雪的微物理特征及其随气象条件的变化。雪粒径分布(PSD)呈凸向下的形状,用伽马分布比指数分布更能表示。随着降雪量的增加,积雪PSD变宽,峰值升高。伽玛PSD参数随降雪率的变化在平均PSD和1 min PSD之间存在差异。与中国北京和韩国平昌的Dm相比,体积加权平均直径Dm随降雪率的增加要快得多,表明首尔的聚集相对重要,首尔77%的降雪发生在850 hpa水平的西北吹时。此次降雪与西高/东低压模式、大海气温差(~ 19℃)和浅降水(≤2.5 km)系统有关,表明黄海的海效降雪贡献很大。在0.5-1 mm h−1的相同强度范围内,比较了850-hPa水平温度较低(≤25百分位,COLD)和温度较高(≥75百分位,WARM)的西北型降雪。与WARM降雪相比,COLD降雪具有较宽的psd和较少的雪粒。此次冷降雪与较大的风切变、较小的静稳定性、- 21 ~ - 9°C的低温和低层大气湿度低有关,这是由于较强的西北风导致较强的冷干平流所致。这意味着更强的湍流和树枝状生长所增强的聚集可以导致更宽的psd,而较低温度下减弱的边缘可能与较少边缘的雪颗粒有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Investigating Fuel Efficiency of Heavy-Duty Vehicle Platooning Using a CFD Model Role of the Pacific-Japan Pattern in Shaping Sri Lanka Rainfall Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1