Dynamics and routes to strange non-chaotic behaviour in MEMS resonators: analysis and characterisation

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pramana Pub Date : 2024-12-27 DOI:10.1007/s12043-024-02858-4
Mohanasubha Ramasamy, Suresh Kumarasamy, Dianavinnarasi Joseph, Jeeva Arulanantham Muthu, Karthikeyan Rajagopal
{"title":"Dynamics and routes to strange non-chaotic behaviour in MEMS resonators: analysis and characterisation","authors":"Mohanasubha Ramasamy,&nbsp;Suresh Kumarasamy,&nbsp;Dianavinnarasi Joseph,&nbsp;Jeeva Arulanantham Muthu,&nbsp;Karthikeyan Rajagopal","doi":"10.1007/s12043-024-02858-4","DOIUrl":null,"url":null,"abstract":"<div><p>The present study deals with the dynamics of microelectromechanical system (MEMS) resonators, especially the exploration of strange non-chaotic attractor (SNA) in MEMS resonators. SNAs often arise in systems driven by quasiperiodic forces, where the system is subjected to multiple frequencies that are incommensurate. When we apply the quasiperiodic forces, we identify the presence of SNA regions in the MEMS oscillators through bifurcation and Lyapunov analysis. Subsequently, we analyse the route of SNA in the considered system. In our analysis, the first identified route to SNA is the fractilisation route which is validated through various analyses, such as Poincaré map, distribution of finite-time Lyapunov exponents, Lyapunov variance, singular continuous spectrum and recurrence analysis. Moreover, two additional routes to SNA, namely Haegy–Heamel route and intermittency route, are identified and thoroughly investigated, and the presence of SNA is confirmed using singular continuous spectrum analysis. This work helps to understand SNA that can be important in fields like signal processing, where distinguishing between chaotic and non-chaotic signals is crucial. In particular, the emergence and characterisation of SNAs in MEMS resonators open avenues for further research and applications in nonlinear dynamics and chaotic systems.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02858-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study deals with the dynamics of microelectromechanical system (MEMS) resonators, especially the exploration of strange non-chaotic attractor (SNA) in MEMS resonators. SNAs often arise in systems driven by quasiperiodic forces, where the system is subjected to multiple frequencies that are incommensurate. When we apply the quasiperiodic forces, we identify the presence of SNA regions in the MEMS oscillators through bifurcation and Lyapunov analysis. Subsequently, we analyse the route of SNA in the considered system. In our analysis, the first identified route to SNA is the fractilisation route which is validated through various analyses, such as Poincaré map, distribution of finite-time Lyapunov exponents, Lyapunov variance, singular continuous spectrum and recurrence analysis. Moreover, two additional routes to SNA, namely Haegy–Heamel route and intermittency route, are identified and thoroughly investigated, and the presence of SNA is confirmed using singular continuous spectrum analysis. This work helps to understand SNA that can be important in fields like signal processing, where distinguishing between chaotic and non-chaotic signals is crucial. In particular, the emergence and characterisation of SNAs in MEMS resonators open avenues for further research and applications in nonlinear dynamics and chaotic systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
期刊最新文献
Quantifying the particle aspect of quantum systems Dynamics and routes to strange non-chaotic behaviour in MEMS resonators: analysis and characterisation Response surface methodology for the optimisation of heat transfer rate for concatenated non-Newtonian fluid flow over a curved stretching sheet Entropy optimisation of a viscous bioconvective nanofluid flow with Coriolis and Lorentz forces using bivariate spectral quasi-linearisation technique Synergistic sunspot forecasting: a fusion of time series analysis and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1