{"title":"Frequency-dependent Layered Q Model and Attenuation Tomography of the Himachal North-West Himalaya, India: Insight to Explore Crustal Variation","authors":"Parveen Kumar, V. J. Sahakian, Monika, Sandeep","doi":"10.1007/s00024-024-03618-6","DOIUrl":null,"url":null,"abstract":"<div><p>The three-dimensional attenuation structure and frequency-dependent attenuation layered model are proposed for constraining seismic hazards and exploring the presence of an intra-crustal high conductive (ICHC) layer in the Himachal Himalaya, India. Using acceleration data recorded in the Himachal Himalaya, this work quantifies the attenuation characteristics in the form of shear-wave quality factor (Q<sub>β</sub>). The low Q<sub>β</sub> values (ranging 10–60) depict an aqueous fluid zone starting from a depth of ~ 11 km. This aqueous fluid identified in the study region closely resembles the ICHC layer identified by other researchers in its adjacent area. The geometry of the Main Himalayan Thrust (MHT) is explored in terms of the obtained attenuation model, which suggests the absence of a ramp structure of MHT below the Main Central Thrust (MCT) in the study region. The presence of an aqueous fluid zone identified at 11–20 km depth may be one of the possible reasons for high seismicity in the Himalayan seismic belt. This work also suggests a frequency-dependent shear wave attenuation (Q<sub>β</sub>(f)) model of the form Q<sub>o</sub>f <sup>n</sup> for six different layers of 5 km thickness each. The obtained layered model suggests low Q values, i.e., (49 ± 16) f <sup>(0.60±0.12)</sup> for layer 3 (10–15 km) and (27 ± 11) f <sup>(0.99±0.18)</sup> for layer 4 (15–20 km), corresponding to the aqueous fluid in the study region. The obtained Q<sub>β</sub>(f) model appraises the region’s seismic hazard by describing the heterogeneity and tectonic activity level in the present study region.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 12","pages":"3539 - 3559"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03618-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional attenuation structure and frequency-dependent attenuation layered model are proposed for constraining seismic hazards and exploring the presence of an intra-crustal high conductive (ICHC) layer in the Himachal Himalaya, India. Using acceleration data recorded in the Himachal Himalaya, this work quantifies the attenuation characteristics in the form of shear-wave quality factor (Qβ). The low Qβ values (ranging 10–60) depict an aqueous fluid zone starting from a depth of ~ 11 km. This aqueous fluid identified in the study region closely resembles the ICHC layer identified by other researchers in its adjacent area. The geometry of the Main Himalayan Thrust (MHT) is explored in terms of the obtained attenuation model, which suggests the absence of a ramp structure of MHT below the Main Central Thrust (MCT) in the study region. The presence of an aqueous fluid zone identified at 11–20 km depth may be one of the possible reasons for high seismicity in the Himalayan seismic belt. This work also suggests a frequency-dependent shear wave attenuation (Qβ(f)) model of the form Qof n for six different layers of 5 km thickness each. The obtained layered model suggests low Q values, i.e., (49 ± 16) f (0.60±0.12) for layer 3 (10–15 km) and (27 ± 11) f (0.99±0.18) for layer 4 (15–20 km), corresponding to the aqueous fluid in the study region. The obtained Qβ(f) model appraises the region’s seismic hazard by describing the heterogeneity and tectonic activity level in the present study region.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.