{"title":"A review of the research progress of cooling technology in deep mining","authors":"Min Qu, Yongliang Zhang, Xilong Zhang, Hongwei Mu, Shili Yin, Yunfei Liu, Lijing Meng","doi":"10.1007/s10973-024-13719-y","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature heat damage is a common phenomenon in the field of mine mining, and as the mining depth increases, the degree of underground heat damage is also increasing, which seriously restricts the productivity of the mine and affects the physical and mental health of workers. Based on the mining situation of mineral resources, this paper summarized the formation mechanism and heat dissipation characteristics of different heat sources of mine high-temperature heat damage and analyzed the influence of heat damage on the mine production process and human physiological and biochemical indicators. Then, we summarized the existing cooling technologies, mainly divided into non-artificial and artificial cooling technology. The cooling mechanism and application status of cooling technology were introduced and analyzed and compared the characteristics and application scope of each cooling technology, which have specific guiding and reference significance for the selection of cooling technology for different degrees of heat damage mines. Finally, building upon the low-temperature rock formation pre-cooling technology, a novel concept for quantifying the mine inlet airflow volume was advanced, along with the formulation of a relationship model that correlates the geometry of the roadway with the temperature alteration of the airflow. This development laid a theoretical foundation for harnessing the ground temperature effect in shallow roadways to regulate the temperature of the mine’s inlet airflow, thereby enhancing the working environment at the mine’s working face.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"14535 - 14557"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13719-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature heat damage is a common phenomenon in the field of mine mining, and as the mining depth increases, the degree of underground heat damage is also increasing, which seriously restricts the productivity of the mine and affects the physical and mental health of workers. Based on the mining situation of mineral resources, this paper summarized the formation mechanism and heat dissipation characteristics of different heat sources of mine high-temperature heat damage and analyzed the influence of heat damage on the mine production process and human physiological and biochemical indicators. Then, we summarized the existing cooling technologies, mainly divided into non-artificial and artificial cooling technology. The cooling mechanism and application status of cooling technology were introduced and analyzed and compared the characteristics and application scope of each cooling technology, which have specific guiding and reference significance for the selection of cooling technology for different degrees of heat damage mines. Finally, building upon the low-temperature rock formation pre-cooling technology, a novel concept for quantifying the mine inlet airflow volume was advanced, along with the formulation of a relationship model that correlates the geometry of the roadway with the temperature alteration of the airflow. This development laid a theoretical foundation for harnessing the ground temperature effect in shallow roadways to regulate the temperature of the mine’s inlet airflow, thereby enhancing the working environment at the mine’s working face.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.