{"title":"Heat transfer and flow dynamics of methanol-based CuO and MgO hybrid nanomaterial in convergent and divergent channels: a Jeffery–Hamel flow study","authors":"Rupa Baithalu, S. R. Mishra, Subhajit Panda","doi":"10.1007/s10973-024-13914-x","DOIUrl":null,"url":null,"abstract":"<div><p>The improve design and enhanced thermal management systems nowadays depends upon the enhanced heat transfer capabilities of hybrid nanofluids and their wide range of applications. These lead to efficient cooling in electronic devices, thermal control in chemical processing, and several many industrial as well as biomedical applications. The proposed study aims to enrich the heat transfer characteristic of methanol-based hybrid nanofluid comprising CuO and MgO nanoparticles in convergent and divergent channels. The study focuses on the Jeffery–Hamel flow via porous medium where the impact of heat source is analyzed. The flow behavior is characterized by the role of several pertinent factors those are derived by the implementation of similarity variables in the governing equations. These rules help in transforming the dimensional form of set of equations into non-dimensional form. Numerical solution is presented for the set of equations by using bvp4c routine function in MATLAB particularly utilizing Runge–Kutta fourth-order. However, the investigation explores the key factors such as particle concentration, Reynolds number, Darcy parameter and heat source affecting various flow characteristic. The important results indicate that the existence of CuO and MgO nanoparticles significantly overshoots the conductivity and heat transfer rate in comparison with the base fluid. Further, the fluid velocity is significantly controlled by the increasing Reynolds number.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 24","pages":"15041 - 15052"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13914-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The improve design and enhanced thermal management systems nowadays depends upon the enhanced heat transfer capabilities of hybrid nanofluids and their wide range of applications. These lead to efficient cooling in electronic devices, thermal control in chemical processing, and several many industrial as well as biomedical applications. The proposed study aims to enrich the heat transfer characteristic of methanol-based hybrid nanofluid comprising CuO and MgO nanoparticles in convergent and divergent channels. The study focuses on the Jeffery–Hamel flow via porous medium where the impact of heat source is analyzed. The flow behavior is characterized by the role of several pertinent factors those are derived by the implementation of similarity variables in the governing equations. These rules help in transforming the dimensional form of set of equations into non-dimensional form. Numerical solution is presented for the set of equations by using bvp4c routine function in MATLAB particularly utilizing Runge–Kutta fourth-order. However, the investigation explores the key factors such as particle concentration, Reynolds number, Darcy parameter and heat source affecting various flow characteristic. The important results indicate that the existence of CuO and MgO nanoparticles significantly overshoots the conductivity and heat transfer rate in comparison with the base fluid. Further, the fluid velocity is significantly controlled by the increasing Reynolds number.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.