Enas Abdelsamei, Diaa Sheishah, Boglárka Runa, Olivér Balogh, Csaba Tóth, Péter Primusz, Sándor Trenka, Boudewijn van Leeuwen, Zalán Tobak, Dávid Gergely Páll, György Sipos
{"title":"Application of Ground Penetrating Radar in the Assessment of Aged Roads: Focus On Complex Structures Under Different Weather Conditions","authors":"Enas Abdelsamei, Diaa Sheishah, Boglárka Runa, Olivér Balogh, Csaba Tóth, Péter Primusz, Sándor Trenka, Boudewijn van Leeuwen, Zalán Tobak, Dávid Gergely Páll, György Sipos","doi":"10.1007/s00024-024-03604-y","DOIUrl":null,"url":null,"abstract":"<div><p>Ground penetrating radar (GPR) has been widely used to assess asphalt and pavement, especially in quality testing for newly constructed roads. However, its usage has been limited in regard to aged roads. Thus, this study focuses on the applicability of GPR to extract diverse information regarding structure, thickness, and various conditions, including the moisture content of an aged road section that has undergone repeated renewals. First, two methods were employed to calculate the thickness and dielectric values; the reflection amplitude and ground truth methods. The analysis was done by RADAN 7 software. Based on the findings, the average error of thickness on the same day between continuous GPR and the core data were 2.87% and 8.72%, respectively. Second, dielectric analysis of three structural units was performed under different moisture conditions. As a result, the average dielectric values of macadam (3, 3.3, and 4), surface asphalt layer (4, 7.06, and 8.31), and cement-treated base (4.83, 10.88, and 11.88) were determined under dry, medium-wet, and wet conditions, respectively. The volumetric water difference (<i>f</i>) within the pavement was also estimated. As for the asphalt, macadam, and cement-treated base, the difference in the volume fraction of water (<i>f</i>) was 0.06, 0.01, and 0.1, respectively, under dry and wet conditions, and 0.04, 0.004, and 0.09, respectively, under dry and medium-wet conditions. Overall, the findings demonstrate that reasonably accurate assessments of the pavement thickness, structure, dielectric values, and amplitude of aged roads can be achieved by using a GPR survey under various conditions.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 12","pages":"3633 - 3651"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-024-03604-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03604-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ground penetrating radar (GPR) has been widely used to assess asphalt and pavement, especially in quality testing for newly constructed roads. However, its usage has been limited in regard to aged roads. Thus, this study focuses on the applicability of GPR to extract diverse information regarding structure, thickness, and various conditions, including the moisture content of an aged road section that has undergone repeated renewals. First, two methods were employed to calculate the thickness and dielectric values; the reflection amplitude and ground truth methods. The analysis was done by RADAN 7 software. Based on the findings, the average error of thickness on the same day between continuous GPR and the core data were 2.87% and 8.72%, respectively. Second, dielectric analysis of three structural units was performed under different moisture conditions. As a result, the average dielectric values of macadam (3, 3.3, and 4), surface asphalt layer (4, 7.06, and 8.31), and cement-treated base (4.83, 10.88, and 11.88) were determined under dry, medium-wet, and wet conditions, respectively. The volumetric water difference (f) within the pavement was also estimated. As for the asphalt, macadam, and cement-treated base, the difference in the volume fraction of water (f) was 0.06, 0.01, and 0.1, respectively, under dry and wet conditions, and 0.04, 0.004, and 0.09, respectively, under dry and medium-wet conditions. Overall, the findings demonstrate that reasonably accurate assessments of the pavement thickness, structure, dielectric values, and amplitude of aged roads can be achieved by using a GPR survey under various conditions.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.