Supercritical carbon dioxide foamed thermoplastic polyester elastomer with poly(lactic acid) blending: shrinkage reduction and expansion ratio improvement

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-10-18 DOI:10.1007/s00396-024-05329-9
Zong-quan Gu, Bao-yan Zhao, Li Zhang, Jin-biao Bao
{"title":"Supercritical carbon dioxide foamed thermoplastic polyester elastomer with poly(lactic acid) blending: shrinkage reduction and expansion ratio improvement","authors":"Zong-quan Gu,&nbsp;Bao-yan Zhao,&nbsp;Li Zhang,&nbsp;Jin-biao Bao","doi":"10.1007/s00396-024-05329-9","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoplastic polyester elastomer (TPEE) microcellular foam materials prepared using supercritical carbon dioxide (scCO<sub>2</sub>) as a physical blowing agent suffer from poor dimensional stability, which significantly limits their applications across various fields. This study thoroughly investigates the prevalent issues of high shrinkage and low expansion ratio in the scCO<sub>2</sub> foaming process of TPEE. By introducing poly(lactic acid) (PLA), a rigid material with moderate compatibility, into TPEE through blend modification, we markedly improved the shrinkage behavior of foamed TPEE while enhancing its expansion ratio. The experiments successfully produced TPEE/PLA20 microcellular foams with a stable expansion ratio of 19 times. Compared to pure TPEE, the shrinkage rate decreased from 77.3 to 19.0%. Due to its moderate compatibility, PLA was uniformly dispersed within the TPEE matrix as a dispersed phase, which refined the cell structure through heterogeneous nucleation and reduced cell walls strain. Additionally, rigid PLA micro/nanoparticles acted as stress concentration points, promoting the formation of an open-cell structure by causing cell walls rupture, thereby accelerating gas diffusion. More importantly, high glass transition temperature (<i>T</i><sub>g</sub>) PLA nanoparticles are stretched and embedded in the cell walls during the foaming process, and the heterogeneous nucleation effect of PLA enhances the crystallinity of TPEE. These two factors together increase the rigidity of the cell walls. The synergistic effects of these factors enabled the TPEE/PLA microcellular foam materials to effectively resist shrinkage caused by the pressure differential between the inside and outside of the cells and molecular chain relaxation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"67 - 80"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05329-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoplastic polyester elastomer (TPEE) microcellular foam materials prepared using supercritical carbon dioxide (scCO2) as a physical blowing agent suffer from poor dimensional stability, which significantly limits their applications across various fields. This study thoroughly investigates the prevalent issues of high shrinkage and low expansion ratio in the scCO2 foaming process of TPEE. By introducing poly(lactic acid) (PLA), a rigid material with moderate compatibility, into TPEE through blend modification, we markedly improved the shrinkage behavior of foamed TPEE while enhancing its expansion ratio. The experiments successfully produced TPEE/PLA20 microcellular foams with a stable expansion ratio of 19 times. Compared to pure TPEE, the shrinkage rate decreased from 77.3 to 19.0%. Due to its moderate compatibility, PLA was uniformly dispersed within the TPEE matrix as a dispersed phase, which refined the cell structure through heterogeneous nucleation and reduced cell walls strain. Additionally, rigid PLA micro/nanoparticles acted as stress concentration points, promoting the formation of an open-cell structure by causing cell walls rupture, thereby accelerating gas diffusion. More importantly, high glass transition temperature (Tg) PLA nanoparticles are stretched and embedded in the cell walls during the foaming process, and the heterogeneous nucleation effect of PLA enhances the crystallinity of TPEE. These two factors together increase the rigidity of the cell walls. The synergistic effects of these factors enabled the TPEE/PLA microcellular foam materials to effectively resist shrinkage caused by the pressure differential between the inside and outside of the cells and molecular chain relaxation.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
Cytotoxic activity of guanidinium copolymers loaded with silver nanoparticles and their interaction with model membranes Phenomenon of room temperature interdiffusion self-bonding between entangled glassy polymers: a statistical study Investigation of filling amount and particle size on electrical conductivity of silver conductive composite A green method of preparation of porous melamine formaldehyde resin without template in aqueous solution Computational study of magnetite-ethylene glycol–water-based hybrid nanofluid dynamics on an exponential shrinking/stretching Riga surface under radiative heat flux
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1