Catalytic Cracking of n-Dodecane over P-Modified MFI Zeolites Synthesized by Steam-Assisted Conversion: Effect of SiO2/Al2O3 Ratio

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC Petroleum Chemistry Pub Date : 2024-12-19 DOI:10.1134/S0965544124060203
D. O. Bachurina, A. S. Giliazutdinova, O. V. Potapenko, I. I. Ivanova
{"title":"Catalytic Cracking of n-Dodecane over P-Modified MFI Zeolites Synthesized by Steam-Assisted Conversion: Effect of SiO2/Al2O3 Ratio","authors":"D. O. Bachurina,&nbsp;A. S. Giliazutdinova,&nbsp;O. V. Potapenko,&nbsp;I. I. Ivanova","doi":"10.1134/S0965544124060203","DOIUrl":null,"url":null,"abstract":"<p>The paper describes the physicochemical characterization and catalytic testing of MFI zeolites with different SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios synthesized by steam-assisted crystallization (SAC) and modified with phosphorus (4 wt % loading). Their physicochemical properties were characterized by X-ray diffraction analysis, X-ray fluorescence analysis, scanning electron microscopy, low-temperature nitrogen adsorption, ammonia temperature-programmed desorption, and MAS NMR spectroscopy. Both the parent and P-modified MFI zeolites were then subjected to catalytic tests in cracking of <i>n</i>-dodecane. The yield of light olefins was enhanced only in two cases: when MFI zeolites with SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios of 30–70 were modified with 4 wt % phosphorus and when parent MFI zeolites with SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios of 100–220 were used. It was further found that, in terms of catalytic performance in the cracking of <i>n</i>-dodecane, the MFI zeolites synthesized by SAC were comparable to a commercially available MFI zeolite synthesized under hydrothermal conditions. Moreover, in contrast to the commercially available zeolite, phosphorus modification of the SAC-synthesized zeolite enhanced the yield of C<sub>2</sub>–C<sub>4</sub> olefins.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 9","pages":"1096 - 1105"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124060203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The paper describes the physicochemical characterization and catalytic testing of MFI zeolites with different SiO2/Al2O3 ratios synthesized by steam-assisted crystallization (SAC) and modified with phosphorus (4 wt % loading). Their physicochemical properties were characterized by X-ray diffraction analysis, X-ray fluorescence analysis, scanning electron microscopy, low-temperature nitrogen adsorption, ammonia temperature-programmed desorption, and MAS NMR spectroscopy. Both the parent and P-modified MFI zeolites were then subjected to catalytic tests in cracking of n-dodecane. The yield of light olefins was enhanced only in two cases: when MFI zeolites with SiO2/Al2O3 ratios of 30–70 were modified with 4 wt % phosphorus and when parent MFI zeolites with SiO2/Al2O3 ratios of 100–220 were used. It was further found that, in terms of catalytic performance in the cracking of n-dodecane, the MFI zeolites synthesized by SAC were comparable to a commercially available MFI zeolite synthesized under hydrothermal conditions. Moreover, in contrast to the commercially available zeolite, phosphorus modification of the SAC-synthesized zeolite enhanced the yield of C2–C4 olefins.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸汽催化合成p改性MFI沸石上正十二烷的催化裂化:SiO2/Al2O3的影响
本文介绍了蒸汽辅助结晶法(SAC)合成的不同SiO2/Al2O3比的MFI沸石的理化性质和催化性能。采用x射线衍射分析、x射线荧光分析、扫描电镜、低温氮吸附、氨程序升温解吸、MAS NMR等方法对其理化性质进行表征。然后对母体分子筛和p改性的MFI分子筛进行了正十二烷裂解的催化试验。轻质烯烃的收率只有在两种情况下才会提高:当SiO2/Al2O3比为30-70的MFI沸石用4 wt %的磷改性时,以及当SiO2/Al2O3比为100-220的MFI沸石母体时。进一步发现,SAC合成的MFI沸石在催化正十二烷裂解方面的性能与市售的水热条件下合成的MFI沸石相当。此外,与市售沸石相比,对sac合成的沸石进行磷改性,提高了C2-C4烯烃的收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
期刊最新文献
A Novel Approach to the Extraction of Clusters from ZSM-5 Zeolite for Quantum-Chemical Search for Zn2+ Cation-Exchange Sites Identification of Signals from Individual Crystallographic T-Sites of HBEA Zeolite Framework in 27Al MAS NMR Spectra Physical-Chemical and Catalytic Properties of MEL and MFI Zeolites Obtained by Steam-Assisted Crystallization Catalytic Cracking of n-Dodecane over P-Modified MFI Zeolites Synthesized by Steam-Assisted Conversion: Effect of SiO2/Al2O3 Ratio Catalytic Cracking of n-Dodecane over Alkali-Metal-Modified ZSM-5 Zeolites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1