{"title":"A green method of preparation of porous melamine formaldehyde resin without template in aqueous solution","authors":"Huapeng Cui, Shengnan Li","doi":"10.1007/s00396-024-05334-y","DOIUrl":null,"url":null,"abstract":"<div><p>Porous melamine formaldehyde resin (PMF) was synthesized without using template in aqueous solution with a green preparation method. Conditions such as formaldehyde/melamine, concentration, curing temperature, and time on pore parameters of synthesized porous melamine formaldehyde resin were investigated. The chemical property and pore structure of porous melamine formaldehyde resin were characterized by infrared spectroscopy, SEM, and BET. The results showed that the samples synthesized in solvent water had a surface higher than 490 m<sup>2</sup>/g, pore diameter of about 12.0 nm, and pore volume of about 1.2 cm<sup>3</sup>/g. The surface area and pore structure of porous melamine formaldehyde resin could be adjusted by changing the prepolymer concentration. Due to the large pore diameter and volume, it also adsorbed a great amount of Congo Red (CR), indicating an excellent adsorbent for large molecules. This investigation reveals that the -NH<sub>2</sub> and pore structure have great effects on the adsorption capacity of Congo Red dye of the as-synthesized melamine formaldehyde resin samples.</p><h3>Graphical Abstract</h3><p>The porous melamine formaldehyde resin without using template was synthesized by a green preparation method. The pore structure of the melamine formaldehyde resin was formed by nanoparticles accumulation. The surface area and pore structure of porous melamine formaldehyde resin could be adjusted by changing the prepolymer concentration. The adsorption capability of the porous melamine formaldehyde resin for Congo Red was up 720 mg/g.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 1","pages":"111 - 118"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00396-024-05334-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05334-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Porous melamine formaldehyde resin (PMF) was synthesized without using template in aqueous solution with a green preparation method. Conditions such as formaldehyde/melamine, concentration, curing temperature, and time on pore parameters of synthesized porous melamine formaldehyde resin were investigated. The chemical property and pore structure of porous melamine formaldehyde resin were characterized by infrared spectroscopy, SEM, and BET. The results showed that the samples synthesized in solvent water had a surface higher than 490 m2/g, pore diameter of about 12.0 nm, and pore volume of about 1.2 cm3/g. The surface area and pore structure of porous melamine formaldehyde resin could be adjusted by changing the prepolymer concentration. Due to the large pore diameter and volume, it also adsorbed a great amount of Congo Red (CR), indicating an excellent adsorbent for large molecules. This investigation reveals that the -NH2 and pore structure have great effects on the adsorption capacity of Congo Red dye of the as-synthesized melamine formaldehyde resin samples.
Graphical Abstract
The porous melamine formaldehyde resin without using template was synthesized by a green preparation method. The pore structure of the melamine formaldehyde resin was formed by nanoparticles accumulation. The surface area and pore structure of porous melamine formaldehyde resin could be adjusted by changing the prepolymer concentration. The adsorption capability of the porous melamine formaldehyde resin for Congo Red was up 720 mg/g.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.