Photochemical oxidation of benzylic alcohols at natural sunlight utilizing CuO@ZnFe-LDH/TEMPO and air as the oxidant

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-12-30 DOI:10.1007/s11051-024-06159-0
Elham Sadat Mortazavi, Mehri Salimi, Sara Sobhani
{"title":"Photochemical oxidation of benzylic alcohols at natural sunlight utilizing CuO@ZnFe-LDH/TEMPO and air as the oxidant","authors":"Elham Sadat Mortazavi,&nbsp;Mehri Salimi,&nbsp;Sara Sobhani","doi":"10.1007/s11051-024-06159-0","DOIUrl":null,"url":null,"abstract":"<div><p>A CuO@ZnFe-LDH composite, prepared from the co-precipitation of Cu<sup>2+</sup> with ZnFe-LDH, served as an environmentally friendly photocatalyst. This catalyst was implemented in the selective oxidation of various primary and secondary alcohols to aldehydes or ketones utilizing air as the oxidant, 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO), and sunlight as the light source. The yields varied from low to excellent. It was notable that the oxidation process also allowed for very selective conversion of benzylic alcohols that had phenolic hydroxyl groups. Moreover, leaching of copper from the catalyst during the reaction was minimal. Also, CuO@ZnFe-LDH could be effectively reused, while maintaining its high catalytic activity.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06159-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A CuO@ZnFe-LDH composite, prepared from the co-precipitation of Cu2+ with ZnFe-LDH, served as an environmentally friendly photocatalyst. This catalyst was implemented in the selective oxidation of various primary and secondary alcohols to aldehydes or ketones utilizing air as the oxidant, 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO), and sunlight as the light source. The yields varied from low to excellent. It was notable that the oxidation process also allowed for very selective conversion of benzylic alcohols that had phenolic hydroxyl groups. Moreover, leaching of copper from the catalyst during the reaction was minimal. Also, CuO@ZnFe-LDH could be effectively reused, while maintaining its high catalytic activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用CuO@ZnFe-LDH/TEMPO和空气作为氧化剂,在自然光下对苯基醇进行光化学氧化
将Cu2+与ZnFe-LDH共沉淀法制备了一种CuO@ZnFe-LDH复合材料作为环境友好型光催化剂。该催化剂以空气为氧化剂,2,2,6,6-四甲基哌啶1-氧自由基(TEMPO)为光源,用于多种伯、仲醇选择性氧化制醛或酮。产量从低到高不等。值得注意的是,氧化过程还允许具有酚羟基的苯基醇的选择性转化。此外,在反应过程中,铜从催化剂中浸出是最小的。此外,CuO@ZnFe-LDH可以有效地重复使用,同时保持其高催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
Enhancing magnetomechanical anticancer therapy: impact of nanoparticle aggregation Exploring borophene: pioneering trends in energy storage materials Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives Surface engineering of MoS2 nanosheets by silver (Agn) nanoclusters to enhance the adsorption and gas sensing performance: a DFT study Compression-induced phase transitions in supercooled liquid and glassy confined germanene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1