Guangyu Yan;Wei Han;Chang Liu;Bowang Zhang;Meixuan Li
{"title":"A Simultaneous Wireless Power and Full-Duplex Data Transfer System Using a Mix of Inductive and Capacitive Couplings","authors":"Guangyu Yan;Wei Han;Chang Liu;Bowang Zhang;Meixuan Li","doi":"10.1109/TCSII.2024.3483575","DOIUrl":null,"url":null,"abstract":"This brief presents a novel simultaneous wireless power and data transfer (SWPDT) system that combines inductive and capacitive couplings, featuring full-duplex communication with high data transfer rates. Specifically, the power and forward data are transferred through inductive coupling respectively by means of the DD coils and Q coils, while the backward data is transferred through capacitive coupling by means of the stray capacitances. Because of the decoupling characteristic of the DDQ coil structure and the use of two coupling types, the interferences among the power, forward data, and backward data are relatively low. By integrating the two coupling types, a comprehensive circuit model of full-duplex data transfer is established and analyzed. Finally, a 145-W prototype is actualized with 91.4% power transfer efficiency. The forward and backward data transfer rates are 150 kbps and 600 kbps, respectively, demonstrating the feasibility of the proposed system.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"323-327"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10722032/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This brief presents a novel simultaneous wireless power and data transfer (SWPDT) system that combines inductive and capacitive couplings, featuring full-duplex communication with high data transfer rates. Specifically, the power and forward data are transferred through inductive coupling respectively by means of the DD coils and Q coils, while the backward data is transferred through capacitive coupling by means of the stray capacitances. Because of the decoupling characteristic of the DDQ coil structure and the use of two coupling types, the interferences among the power, forward data, and backward data are relatively low. By integrating the two coupling types, a comprehensive circuit model of full-duplex data transfer is established and analyzed. Finally, a 145-W prototype is actualized with 91.4% power transfer efficiency. The forward and backward data transfer rates are 150 kbps and 600 kbps, respectively, demonstrating the feasibility of the proposed system.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.