Security Synchronization for Complex Cyber-Physical Networks Under Hybrid Asynchronous Attacks

IF 6.7 2区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY IEEE Transactions on Network Science and Engineering Pub Date : 2024-11-07 DOI:10.1109/TNSE.2024.3491823
Xiaojie Huang;Yingying Ren;Da-Wei Ding
{"title":"Security Synchronization for Complex Cyber-Physical Networks Under Hybrid Asynchronous Attacks","authors":"Xiaojie Huang;Yingying Ren;Da-Wei Ding","doi":"10.1109/TNSE.2024.3491823","DOIUrl":null,"url":null,"abstract":"This paper investigates the synchronization of complex cyber-physical networks (CCPNs) under hybrid asynchronous attacks. Firstly, a kind of hybrid asynchronous attack model consisting of DoS attacks in sensor to controller (S-C) channel, DoS attacks in controller to actuator (C-A) channel and connection attacks is proposed, which is a new generalization of traditional synchronous attack model. Secondly, a distributed controller using two combinational measurements of node states and sensor outputs is designed to obtain the synchronization criteria of CCPNs under hybrid asynchronous attacks. Then, two methods are proposed to ensure that all nodes of CCPNs are synchronized based on the designed distributed controller. Meanwhile, the duration time and frequency of attacks that the systems can tolerate are calculated. Finally, two examples are given to illustrate the effectiveness of the proposed method.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 1","pages":"237-251"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747290/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the synchronization of complex cyber-physical networks (CCPNs) under hybrid asynchronous attacks. Firstly, a kind of hybrid asynchronous attack model consisting of DoS attacks in sensor to controller (S-C) channel, DoS attacks in controller to actuator (C-A) channel and connection attacks is proposed, which is a new generalization of traditional synchronous attack model. Secondly, a distributed controller using two combinational measurements of node states and sensor outputs is designed to obtain the synchronization criteria of CCPNs under hybrid asynchronous attacks. Then, two methods are proposed to ensure that all nodes of CCPNs are synchronized based on the designed distributed controller. Meanwhile, the duration time and frequency of attacks that the systems can tolerate are calculated. Finally, two examples are given to illustrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合异步攻击下复杂网络-物理网络的安全同步
研究了混合异步攻击下复杂网络物理网络(ccpn)的同步问题。首先,提出了一种由传感器到控制器(S-C)通道DoS攻击、控制器到执行器(C-A)通道DoS攻击和连接攻击组成的混合异步攻击模型,是对传统同步攻击模型的新推广。其次,设计了一种基于节点状态和传感器输出两种组合测量的分布式控制器,以获得混合异步攻击下ccpn的同步准则。然后,基于所设计的分布式控制器,提出了两种保证ccpn各节点同步的方法。同时,计算出系统可容忍攻击的持续时间和频率。最后,通过两个算例说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Network Science and Engineering
IEEE Transactions on Network Science and Engineering Engineering-Control and Systems Engineering
CiteScore
12.60
自引率
9.10%
发文量
393
期刊介绍: The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.
期刊最新文献
Table of Contents Editorial: Introduction of New EiC Editorial: IEEE Transactions on Network Science and Engineering 2025 New Year Editorial 2024 Index IEEE Transactions on Network Science and Engineering Vol. 11 GSpect: Spectral Filtering for Cross-Scale Graph Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1