{"title":"An Efficient GPU Algorithm for Lattice Boltzmann Method on Sparse Complex Geometries","authors":"Zhangrong Qin;Xusheng Lu;Long Lv;Zhongxiang Tang;Binghai Wen","doi":"10.1109/TPDS.2024.3510810","DOIUrl":null,"url":null,"abstract":"Many fluid flow problems, such as the porous media, arterial blood flow and tissue fluid, contain sparse complex geometries. Although the lattice Boltzmann method is good at dealing with the complex boundaries, these sparse complex geometries cause the low computational performance and high memory consumption when the graphics processing unit (GPU) is used to accelerate the numerical computation. These problems would be addressed by compact memory layout, sophisticated memory access and enhanced thread utilization. This paper proposes a GPU-based algorithm to improve the lattice Boltzmann simulations with sparse complex geometries. An access pattern for a single set of distribution functions together with a semi-direct addressing is adopted to reduce memory consumption, while a collected structure of arrays is employed to enhance memory access efficiency. Furthermore, an address index array and a node classification coding scheme are employed to improve the GPU thread utilization ratio and reduce the GPU global memory access, respectively. The accuracy and mesh-independence has been verified by the numerical simulations of Poiseuille flow and porous media flow with face-centered filled spheres. The present algorithm has a significantly lower memory consumption than those based on direct or indirect addressing schemes. It improves the computational performance by several times compared to the other algorithms on the common GPU hardware.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 2","pages":"239-252"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777598/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Many fluid flow problems, such as the porous media, arterial blood flow and tissue fluid, contain sparse complex geometries. Although the lattice Boltzmann method is good at dealing with the complex boundaries, these sparse complex geometries cause the low computational performance and high memory consumption when the graphics processing unit (GPU) is used to accelerate the numerical computation. These problems would be addressed by compact memory layout, sophisticated memory access and enhanced thread utilization. This paper proposes a GPU-based algorithm to improve the lattice Boltzmann simulations with sparse complex geometries. An access pattern for a single set of distribution functions together with a semi-direct addressing is adopted to reduce memory consumption, while a collected structure of arrays is employed to enhance memory access efficiency. Furthermore, an address index array and a node classification coding scheme are employed to improve the GPU thread utilization ratio and reduce the GPU global memory access, respectively. The accuracy and mesh-independence has been verified by the numerical simulations of Poiseuille flow and porous media flow with face-centered filled spheres. The present algorithm has a significantly lower memory consumption than those based on direct or indirect addressing schemes. It improves the computational performance by several times compared to the other algorithms on the common GPU hardware.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.