Hardware-Optimized Regression Tree-Based Sigmoid and Tanh Functions for Machine Learning Applications

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2024-10-23 DOI:10.1109/TCSII.2024.3485493
Akash Dev Roshan;Prithwijit Guha;Gaurav Trivedi
{"title":"Hardware-Optimized Regression Tree-Based Sigmoid and Tanh Functions for Machine Learning Applications","authors":"Akash Dev Roshan;Prithwijit Guha;Gaurav Trivedi","doi":"10.1109/TCSII.2024.3485493","DOIUrl":null,"url":null,"abstract":"The sigmoid and \n<inline-formula> <tex-math>$hyperbolic\\ tangent~(tanh)$ </tex-math></inline-formula>\n functions are widely recognized as the most commonly employed nonlinear activation functions in artificial neural networks. These functions incorporate exponential terms to introduce nonlinearity, which imposes significant challenges when realized on hardware. This brief presents a novel approach for the hardware implementation of sigmoid and tanh functions, leveraging a regression tree and linear regression. The proposed method divides their nonlinear region into small segments using a regression tree. These segments are further approximated using a linear regression technique, the line of best fit. Experimental results demonstrate the average errors of \n<inline-formula> <tex-math>$4\\times 10^{-4}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$9\\times 10^{-4}$ </tex-math></inline-formula>\n of sigmoid and tanh functions compared to exact functions. The above functions produce 24.52% and 35.71% less average error than the best contemporary method when implemented on the hardware. Additionally, the hardware implementations of sigmoid and tanh functions are more area, power and delay efficient, showcasing the effectiveness of this method compared to other state-of-the-art designs.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"283-287"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10730799/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The sigmoid and $hyperbolic\ tangent~(tanh)$ functions are widely recognized as the most commonly employed nonlinear activation functions in artificial neural networks. These functions incorporate exponential terms to introduce nonlinearity, which imposes significant challenges when realized on hardware. This brief presents a novel approach for the hardware implementation of sigmoid and tanh functions, leveraging a regression tree and linear regression. The proposed method divides their nonlinear region into small segments using a regression tree. These segments are further approximated using a linear regression technique, the line of best fit. Experimental results demonstrate the average errors of $4\times 10^{-4}$ and $9\times 10^{-4}$ of sigmoid and tanh functions compared to exact functions. The above functions produce 24.52% and 35.71% less average error than the best contemporary method when implemented on the hardware. Additionally, the hardware implementations of sigmoid and tanh functions are more area, power and delay efficient, showcasing the effectiveness of this method compared to other state-of-the-art designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习应用中基于硬件优化回归树的Sigmoid和Tanh函数
s型函数和双曲型函数tanh是人工神经网络中最常用的非线性激活函数。这些函数包含指数项以引入非线性,这在硬件上实现时会带来重大挑战。本文介绍了一种利用回归树和线性回归实现sigmoid和tanh函数的新方法。该方法利用回归树将其非线性区域划分为小段。这些部分进一步近似使用线性回归技术,最佳拟合线。实验结果表明,与精确函数相比,sigmoid函数和tanh函数的平均误差分别为$4\ × 10^{-4}$和$9\ × 10^{-4}$。在硬件上实现时,上述函数的平均误差比当前最佳方法分别减少24.52%和35.71%。此外,sigmoid和tanh函数的硬件实现具有更高的面积、功耗和延迟效率,与其他最先进的设计相比,显示了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
2024 Index IEEE Transactions on Circuits and Systems II: Express Briefs Vol. 71 Table of Contents IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information IEEE Circuits and Systems Society Information A Dual Power Mode Q/V-Band SiGe HBT Cascode Power Amplifier With a Novel Reconfigurable Four-Way Wilkinson Power Combiner Balun
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1