Insights into the Assembly of Peptides Catalyzed by Polysaccharides.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2024-12-27 DOI:10.1021/acs.jpcb.4c05751
Wang Li, Yang Zhou, Xinran Zhang, Sheng He, Liulin Yang, Xiaoyu Cao, Zhong-Qun Tian
{"title":"Insights into the Assembly of Peptides Catalyzed by Polysaccharides.","authors":"Wang Li, Yang Zhou, Xinran Zhang, Sheng He, Liulin Yang, Xiaoyu Cao, Zhong-Qun Tian","doi":"10.1021/acs.jpcb.4c05751","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ<sub>16-20</sub> (KF) peptide. The Förster resonance energy transfer (FRET) technology was used to unveil the interaction dynamics between the CMC and KF peptide. Initially, CMC enriches KF monomers through weak nondirectional electrostatic interactions. The electrostatic screening reduces the electrostatic repulsion between KF molecules. Subsequently, KF-KF interactions become dominant, leading to the dissociation of KF from the CMC and nucleation. By adjustment of the adding time, dosage, size, and active sites of CMC, the assembly kinetics of KF can be effectively controlled. This study helps gain a deep understanding of the early heterogeneous nucleation process of peptide assembly and provides valuable guidance for the rational design of efficient nucleating agents for peptide assembly toward functional materials.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05751","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ16-20 (KF) peptide. The Förster resonance energy transfer (FRET) technology was used to unveil the interaction dynamics between the CMC and KF peptide. Initially, CMC enriches KF monomers through weak nondirectional electrostatic interactions. The electrostatic screening reduces the electrostatic repulsion between KF molecules. Subsequently, KF-KF interactions become dominant, leading to the dissociation of KF from the CMC and nucleation. By adjustment of the adding time, dosage, size, and active sites of CMC, the assembly kinetics of KF can be effectively controlled. This study helps gain a deep understanding of the early heterogeneous nucleation process of peptide assembly and provides valuable guidance for the rational design of efficient nucleating agents for peptide assembly toward functional materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Key Chlorophyll a Molecules in the Uphill Energy Transfer from Chlorophyll f to P700 in Far-Red Light-Adapted Photosystem I. Side-Chain and Ring-Size Effects on Permeability in Artificial Water Channels. Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions. Generating Ultradense Jammed Ellipse Packings Using Biased SWAP. Active Site Studies to Explain Kinetics of Lipases in Organic Solvents Using Molecular Dynamics Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1