Improving Stability and Mechanical Strength of Electrospun Chitosan-Polycaprolactone Scaffolds Using Genipin Cross-linking for Biomedical Applications.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-12-27 DOI:10.1002/marc.202400869
Nagalekshmi Uma Thanu Krishnan Neela, Piotr K Szewczyk, Joanna E Karbowniczek, Martyna Polak, Joanna Knapczyk-Korczak, Urszula Stachewicz
{"title":"Improving Stability and Mechanical Strength of Electrospun Chitosan-Polycaprolactone Scaffolds Using Genipin Cross-linking for Biomedical Applications.","authors":"Nagalekshmi Uma Thanu Krishnan Neela, Piotr K Szewczyk, Joanna E Karbowniczek, Martyna Polak, Joanna Knapczyk-Korczak, Urszula Stachewicz","doi":"10.1002/marc.202400869","DOIUrl":null,"url":null,"abstract":"<p><p>Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties. Scanning electron microscopy indicated a uniform morphology of the electrospun fibers, and further, the crystallinity of the scaffolds before and after cross-linking is verified. Fourier-transform infrared spectroscopy is used to analyze the chemical structure, identifying the presence of trifluoroacetic acid residues in the as-spun fibers. These residues are successfully eliminated through neutralization and cross-linking, which are critical for enhancing stability and cell viability in in-vitro studies. Mechanical testing revealed that cross-linked CS+PCL scaffolds exhibit a 350% increase in tensile strength compared to pure CS, and zeta potential reaches the favorable for cell development -26.27 mV. The cytotoxicity assay results with murine NIH 3T3 fibroblast cells indicate the suitability of CS+PCL scaffolds for targeted tissue engineering and wound healing. This work establishes the potential for fine-tuning scaffold properties to create stable, functional, and biocompatible substrates for extended biomedical use.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400869"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400869","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospun nanofiber scaffolds have become vital in biomedical applications due to their high surface area and tunable properties. Chitosan (CS) is widely used, but its rapid degradation limits its effectiveness. This study addresses this limitation by blending CS with polycaprolactone (PCL) and applying genipin cross-linking to enhance its stability and mechanical properties. Scanning electron microscopy indicated a uniform morphology of the electrospun fibers, and further, the crystallinity of the scaffolds before and after cross-linking is verified. Fourier-transform infrared spectroscopy is used to analyze the chemical structure, identifying the presence of trifluoroacetic acid residues in the as-spun fibers. These residues are successfully eliminated through neutralization and cross-linking, which are critical for enhancing stability and cell viability in in-vitro studies. Mechanical testing revealed that cross-linked CS+PCL scaffolds exhibit a 350% increase in tensile strength compared to pure CS, and zeta potential reaches the favorable for cell development -26.27 mV. The cytotoxicity assay results with murine NIH 3T3 fibroblast cells indicate the suitability of CS+PCL scaffolds for targeted tissue engineering and wound healing. This work establishes the potential for fine-tuning scaffold properties to create stable, functional, and biocompatible substrates for extended biomedical use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用Genipin交联提高电纺丝壳聚糖-聚己内酯支架的稳定性和机械强度。
电纺丝纳米纤维支架由于其高表面积和可调的特性在生物医学应用中变得至关重要。壳聚糖(CS)被广泛应用,但其快速降解限制了其有效性。本研究通过将CS与聚己内酯(PCL)共混,并应用genipin交联来提高其稳定性和力学性能,从而解决了这一问题。扫描电镜显示静电纺丝纤维形态均匀,进一步验证了交联前后支架的结晶度。利用傅里叶变换红外光谱法对其化学结构进行了分析,确定了纺态纤维中存在三氟乙酸残留物。这些残基通过中和和交联成功消除,这对于增强体外研究中的稳定性和细胞活力至关重要。力学测试表明,交联CS+PCL支架的抗拉强度比纯CS提高350%,zeta电位达到有利于细胞发育的-26.27 mV。小鼠NIH 3T3成纤维细胞的细胞毒性实验结果表明,CS+PCL支架可用于靶向组织工程和伤口愈合。这项工作建立了微调支架特性的潜力,以创建稳定、功能性和生物相容性的基底,用于扩展的生物医学用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Efficient Copolymerization of Methyl Methacrylate and Lactide Using Metalate Catalysts. Hybrid Nanofibrous Membrane with Durable Electret for Anti-Wetting Air Filtration. Polysiloxane-Modified PMMA-Shell Phase Change Microcapsules for Thermal Management Fabrics. Recent Advances in Direct Synthesis of Functional Polymers of Intrinsic Microporosity Based on (Super)Acid Catalysis. Solventless Dual-Cure Liquid Resins Via Circular Use of Phthalic Anhydride for Recyclable Composite Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1