Effect of Moisture Sorption and Lactose Type on Tablet Quality: A Hygroscopicity Study between Lactose Powder and Tablets.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2024-12-25 DOI:10.1021/acs.molpharmaceut.4c01164
Chuting Shi, Ying Fang, Zhenda Liu, Youjie Wang, Lan Shen, Lijie Zhao
{"title":"Effect of Moisture Sorption and Lactose Type on Tablet Quality: A Hygroscopicity Study between Lactose Powder and Tablets.","authors":"Chuting Shi, Ying Fang, Zhenda Liu, Youjie Wang, Lan Shen, Lijie Zhao","doi":"10.1021/acs.molpharmaceut.4c01164","DOIUrl":null,"url":null,"abstract":"<p><p>Lactose is one of the most commonly used tablet diluents and fillers. However, the moisture sorption of lactose powder could exert detrimental effects on the excipient itself, as well as on the tablet quality. The effects of storage relative humidity (RH) conditions for different grades of lactose powders and tablets on compression behavior and tablet qualities were investigated. Four types of lactose were selected in this study: sieved lactose (Pharmatose 110M), granulated lactose (SuperTab 30GR), anhydrous lactose (SuperTab 21AN), and spray-dried lactose (SuperTab 14SD). These powders and tablets were stored at three RH levels (33, 58, 75%) for a certain period of time before determining their properties. For the moisture-sorbed powder, there was little change in the basic physical properties of lactose powder. Based on the dynamic vapor sorption (DVS) results, the lactose grades determined their hygroscopic properties. The reduction in mechanical strength of lactose powder during storage became less pronounced except for 14SD. But a reduction was observed in the tensile strength (TS) of the 14SD powder from 2.1 to 0.9 MPa after storage at 75% RH for 30 days. The fragmentation of lactose increased with increasing storage humidity. By using multivariate statistical analysis, the similarity and variation of powder properties between 14SD and other types of lactose were visualized. For the moisture-sorbed tablet, the TS became higher and the friability became lower. The TS of lactose tablets exhibited an increase of up to 59.8%. Whether water uptake occurred before or after compression adversely affected tablet disintegration. In conclusion, adverse phenomena during production and storage can be effectively minimized by a better understanding of the effects of moisture sorption on lactose powder and tablets.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01164","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lactose is one of the most commonly used tablet diluents and fillers. However, the moisture sorption of lactose powder could exert detrimental effects on the excipient itself, as well as on the tablet quality. The effects of storage relative humidity (RH) conditions for different grades of lactose powders and tablets on compression behavior and tablet qualities were investigated. Four types of lactose were selected in this study: sieved lactose (Pharmatose 110M), granulated lactose (SuperTab 30GR), anhydrous lactose (SuperTab 21AN), and spray-dried lactose (SuperTab 14SD). These powders and tablets were stored at three RH levels (33, 58, 75%) for a certain period of time before determining their properties. For the moisture-sorbed powder, there was little change in the basic physical properties of lactose powder. Based on the dynamic vapor sorption (DVS) results, the lactose grades determined their hygroscopic properties. The reduction in mechanical strength of lactose powder during storage became less pronounced except for 14SD. But a reduction was observed in the tensile strength (TS) of the 14SD powder from 2.1 to 0.9 MPa after storage at 75% RH for 30 days. The fragmentation of lactose increased with increasing storage humidity. By using multivariate statistical analysis, the similarity and variation of powder properties between 14SD and other types of lactose were visualized. For the moisture-sorbed tablet, the TS became higher and the friability became lower. The TS of lactose tablets exhibited an increase of up to 59.8%. Whether water uptake occurred before or after compression adversely affected tablet disintegration. In conclusion, adverse phenomena during production and storage can be effectively minimized by a better understanding of the effects of moisture sorption on lactose powder and tablets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Comparison of a Series of 68Ga-Labeled DOTA-LLP2A Conjugates for Positron Emission Tomography Imaging of Very Late Antigen-4 in Melanoma. Subcutaneous Administration of Therapeutic Monoclonal Antibody Drug Products Using a Syringe in Blinded Clinical Trials: Advances and Key Aspects Related to Blinding/Matching/Masking Strategies for Placebo Formulation. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment. Comparative Study of Dimeric Fibroblast Activation Protein-Targeting Radioligands Labeled with Fluorine-18, Copper-64, and Gallium-68. Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1