Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S0-driven autotrophic denitrification system.
Shuyan Yin, Yi-Xuan Wang, Cheng Hou, Jing Wang, Jing Xu, Xinbai Jiang, Dan Chen, Yang Mu, Jinyou Shen
{"title":"Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S<sup>0</sup>-driven autotrophic denitrification system.","authors":"Shuyan Yin, Yi-Xuan Wang, Cheng Hou, Jing Wang, Jing Xu, Xinbai Jiang, Dan Chen, Yang Mu, Jinyou Shen","doi":"10.1016/j.biortech.2024.132020","DOIUrl":null,"url":null,"abstract":"<p><p>Anammox coupled partial S<sup>0</sup>-driven autotrophic denitrification (PS<sup>0</sup>AD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively. Except for anammox and PS<sup>0</sup>AD processes, <sup>15</sup>N isotope labeling tests determined that sulfur reshaped nitrogen metabolism pathways, providing solid evidence for the occurrence of sulfammox process. SOB and AnAOB collaborate in nitrogen and sulfur conversion, with SOB-drived PS<sup>0</sup>AD processes reducing nitrate to nitrite for AnAOB to remove ammonia. Conversely, the nitrate produced from anammox process can be reused by SOB. Metagenomic analyses verified that SOB drove the PS<sup>0</sup>AD process through encoding soxBYZ gene, while AnAOB might play an important role in simultaneously driving the anammox and sulfammox processes. These findings underscore the importance of biofilm and clarify the nitrogen-sulfur cycle mechanisms within the coupled system.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132020"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.132020","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Anammox coupled partial S0-driven autotrophic denitrification (PS0AD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively. Except for anammox and PS0AD processes, 15N isotope labeling tests determined that sulfur reshaped nitrogen metabolism pathways, providing solid evidence for the occurrence of sulfammox process. SOB and AnAOB collaborate in nitrogen and sulfur conversion, with SOB-drived PS0AD processes reducing nitrate to nitrite for AnAOB to remove ammonia. Conversely, the nitrate produced from anammox process can be reused by SOB. Metagenomic analyses verified that SOB drove the PS0AD process through encoding soxBYZ gene, while AnAOB might play an important role in simultaneously driving the anammox and sulfammox processes. These findings underscore the importance of biofilm and clarify the nitrogen-sulfur cycle mechanisms within the coupled system.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.