Amanda Lopes Campos , Marina Damasceno e Souza de Carvalho Chiari , Beatriz Fonseca Vela , Rafael Bergamo Trinca , Gabriela de Souza Balbinot , Fabrício Mezzomo Collares , Roberto Ruggiero Braga
{"title":"Dentin remineralization induced by experimental composites containing calcium orthophosphate particles","authors":"Amanda Lopes Campos , Marina Damasceno e Souza de Carvalho Chiari , Beatriz Fonseca Vela , Rafael Bergamo Trinca , Gabriela de Souza Balbinot , Fabrício Mezzomo Collares , Roberto Ruggiero Braga","doi":"10.1016/j.dental.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization <em>in vitro</em>. Additionally, the mechanical properties of the materials were tested.</div></div><div><h3>Methods</h3><div>Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50). Ca<sup>2 +</sup> release in water was monitored for 8 weeks using inductively coupled plasma optical emission spectrometry (n = 3). Composites were applied to artificial lesions (180 μm in depth) prepared in dentin discs and the specimens were kept in simulated body fluid for 8 weeks (n = 8–10). Dentin elastic modulus (EM) and hardness (H) across the lesion were determined by nanoindentation (5 mN, 5 s). Mineral density was determined by microCT. Composite degree of conversion (DC) was determined by near-FTIR spectroscopy (n = 3). Fracture strength and elastic modulus were determined using biaxial flexural test (n = 10). Data were analysed by ANOVA/Tukey test, except for mineral density (Kruskal-Wallis, alpha:0.05).</div></div><div><h3>Results</h3><div>Ca<sup>2+</sup> release increase linearly with DCPD fraction in the composite (p < 0.001). Lesions kept in contact with composites containing 40 % and 50 % DCPD presented significant increases in EM and H in the outer region (0–90 μm) and in EM in the inner region (90–180 μm) compared to the negative control. MicroCT was not able to differentiate among treatments. DCPD-containing composites presented DC higher than the control (p < 0.01). Flexural strength and modulus were inversely related to DCPD content (p < 0.001).</div></div><div><h3>Significance</h3><div>The composite containing 40 vol% DCPD presented the best compromise between mechanical properties and remineralization potential.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"41 3","pages":"Pages 265-271"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S010956412400349X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
This study aimed to verify if composites containing dicalcium phosphate dihydrate particles (DCPD) are able to induce dentin remineralization in vitro. Additionally, the mechanical properties of the materials were tested.
Methods
Four composites with 50 vol% inorganic content and 1 BisGMA: 1 TEGDMA (mols) were prepared, with different DCPD:glass ratios (50:0, 40:10, 30:20 and 0:50). Ca2 + release in water was monitored for 8 weeks using inductively coupled plasma optical emission spectrometry (n = 3). Composites were applied to artificial lesions (180 μm in depth) prepared in dentin discs and the specimens were kept in simulated body fluid for 8 weeks (n = 8–10). Dentin elastic modulus (EM) and hardness (H) across the lesion were determined by nanoindentation (5 mN, 5 s). Mineral density was determined by microCT. Composite degree of conversion (DC) was determined by near-FTIR spectroscopy (n = 3). Fracture strength and elastic modulus were determined using biaxial flexural test (n = 10). Data were analysed by ANOVA/Tukey test, except for mineral density (Kruskal-Wallis, alpha:0.05).
Results
Ca2+ release increase linearly with DCPD fraction in the composite (p < 0.001). Lesions kept in contact with composites containing 40 % and 50 % DCPD presented significant increases in EM and H in the outer region (0–90 μm) and in EM in the inner region (90–180 μm) compared to the negative control. MicroCT was not able to differentiate among treatments. DCPD-containing composites presented DC higher than the control (p < 0.01). Flexural strength and modulus were inversely related to DCPD content (p < 0.001).
Significance
The composite containing 40 vol% DCPD presented the best compromise between mechanical properties and remineralization potential.
期刊介绍:
Dental Materials publishes original research, review articles, and short communications.
Academy of Dental Materials members click here to register for free access to Dental Materials online.
The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology.
Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.