Region-specific biomechanical characterization of ascending thoracic aortic aneurysm of hypertensive patients with bicuspid aortic valves.

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2024-12-26 DOI:10.1007/s10237-024-01917-4
Xiaojuan Xu, Fan Yang, Yue Yu, Yuan-Feng Xin, Jianhua Tong
{"title":"Region-specific biomechanical characterization of ascending thoracic aortic aneurysm of hypertensive patients with bicuspid aortic valves.","authors":"Xiaojuan Xu, Fan Yang, Yue Yu, Yuan-Feng Xin, Jianhua Tong","doi":"10.1007/s10237-024-01917-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery. Biaxial extension tests were employed to characterize region-specific biaxial mechanical behaviors of the hypertensive BAV-ATAAs. A material model was used to fit biaxial experimental data to obtain model parameters in different regions. Histological analysis was performed to investigate the underlying aortic microstructure and to determine percentages of elastic and collagen fibers. Mechanical behaviors of the hypertensive BAV-ATAAs were nonlinear and anisotropic for most specimens from anterior, lateral and posterior regions. Under the equibiaxial stresses, the ATAA tissues in the lateral region had significantly lower extensibility and significantly higher stiffness in both circumferential and longitudinal directions when compared with the posterior and medial regions. The material model was able to fit regional biaxial data well. Histology showed that laminar structures of elastic fibers were mainly disrupted in the anterior and lateral regions in which, however, pronounced collagen fiber hyperplasia was observed. Moreover, there was a strong positive correlation between circumferential aortic stiffness and patient age in the anterior and lateral regions. Our results suggest that elastic properties in the lateral and anterior regions are more deteriorated than those in the posterior and medial regions for the hypertensive BAV-ATAAs. Thus, the outer curvature of the ATAA wall should be regarded as special quadrants that may be highly susceptible to microstructural changes and may have a substantial impact on aneurysm growth.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01917-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertension and bicuspid aortic valve (BAV) are key clinical factors that may affect local biomechanical properties of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate regional differences in biaxial mechanical properties of the ATAAs for the hypertensive patients with BAV. Fresh ATAA samples were harvested from 16 hypertensive patients (age, 66 ± 9 years) undergoing elective aortic surgery. Biaxial extension tests were employed to characterize region-specific biaxial mechanical behaviors of the hypertensive BAV-ATAAs. A material model was used to fit biaxial experimental data to obtain model parameters in different regions. Histological analysis was performed to investigate the underlying aortic microstructure and to determine percentages of elastic and collagen fibers. Mechanical behaviors of the hypertensive BAV-ATAAs were nonlinear and anisotropic for most specimens from anterior, lateral and posterior regions. Under the equibiaxial stresses, the ATAA tissues in the lateral region had significantly lower extensibility and significantly higher stiffness in both circumferential and longitudinal directions when compared with the posterior and medial regions. The material model was able to fit regional biaxial data well. Histology showed that laminar structures of elastic fibers were mainly disrupted in the anterior and lateral regions in which, however, pronounced collagen fiber hyperplasia was observed. Moreover, there was a strong positive correlation between circumferential aortic stiffness and patient age in the anterior and lateral regions. Our results suggest that elastic properties in the lateral and anterior regions are more deteriorated than those in the posterior and medial regions for the hypertensive BAV-ATAAs. Thus, the outer curvature of the ATAA wall should be regarded as special quadrants that may be highly susceptible to microstructural changes and may have a substantial impact on aneurysm growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
Actin instability alters red blood cell mechanics and Piezo1 channel activity. Fluid-structure-growth modeling in ascending aortic aneurysm: capability to reproduce a patient case. Modeling bladder mechanics with 4D reconstruction of murine ex vivo bladder filling. Stress relaxation rates of myocardium from failing and non-failing hearts. Region-specific biomechanical characterization of ascending thoracic aortic aneurysm of hypertensive patients with bicuspid aortic valves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1