Expression of Elastin, F-Box and WD-40 Domain-Containing Protein 2, Fibrillin-1, and Alpha-Smooth Muscle Actin in Utilized Blood Vessels for explant culture-A New 3D in Vitro Vascular Model from Bovine Legs.
{"title":"Expression of Elastin, F-Box and WD-40 Domain-Containing Protein 2, Fibrillin-1, and Alpha-Smooth Muscle Actin in Utilized Blood Vessels for explant culture-A New 3D in Vitro Vascular Model from Bovine Legs.","authors":"Mari Akiyama","doi":"10.1007/s12013-024-01647-5","DOIUrl":null,"url":null,"abstract":"<p><p>Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum. Here, it is hypothesized that FBXW2 has different roles in periosteum and blood vessels. Furthermore, if FBXW2 would be a component of elastic fiber of blood vessels, FBXW2 would be expressed where the well-known components elastin and fibrillin-1 are expressed. For this purpose, explant culture of blood vessels from bovine legs were performed for 5 weeks. It was found that elastin and FBXW2 were expressed within the elastic laminae, whereas fibrillin-1 was expressed around them. After explant culture, elastin and FBXW2 sustained the shape of the elastic fibers in the elastic lamina, whereas the fibrillin-1-rich layer became wide range and encompass toward intima and adventitia layers. Hematoxylin Eosin staining and immunohistochemistry of alpha-smooth muscle actin (α-SMA) revealed weakened media layer after 5 weeks culture. Although fibrillin-1 is a well-known component of elastic fibers and elastin, this study revealed that the location of fibrillin-1 is different from that of elastin, whereas FBXW2 is present in the same region as elastin from day 0 to week 5. In blood vessels, fibrillin-1 fibers around the elastic lamina may be oxytalan fibers. Thus, the proposed 3D in vitro model in this study is useful for identifying the mechanisms of vascular degradation.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01647-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum. Here, it is hypothesized that FBXW2 has different roles in periosteum and blood vessels. Furthermore, if FBXW2 would be a component of elastic fiber of blood vessels, FBXW2 would be expressed where the well-known components elastin and fibrillin-1 are expressed. For this purpose, explant culture of blood vessels from bovine legs were performed for 5 weeks. It was found that elastin and FBXW2 were expressed within the elastic laminae, whereas fibrillin-1 was expressed around them. After explant culture, elastin and FBXW2 sustained the shape of the elastic fibers in the elastic lamina, whereas the fibrillin-1-rich layer became wide range and encompass toward intima and adventitia layers. Hematoxylin Eosin staining and immunohistochemistry of alpha-smooth muscle actin (α-SMA) revealed weakened media layer after 5 weeks culture. Although fibrillin-1 is a well-known component of elastic fibers and elastin, this study revealed that the location of fibrillin-1 is different from that of elastin, whereas FBXW2 is present in the same region as elastin from day 0 to week 5. In blood vessels, fibrillin-1 fibers around the elastic lamina may be oxytalan fibers. Thus, the proposed 3D in vitro model in this study is useful for identifying the mechanisms of vascular degradation.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.