Photo-thermal conversion properties of MXene/metal-organic-frameworks-based nanofluids for solar energy harvesting.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-01 Epub Date: 2024-12-21 DOI:10.1016/j.jcis.2024.12.158
Seyedeh Zahra Haeri, Ali Dashan, Samira Sadeghi, Mitral Golgoli, Mehdi Khiadani, Bahram Ramezanzadeh, Masoumeh Zargar
{"title":"Photo-thermal conversion properties of MXene/metal-organic-frameworks-based nanofluids for solar energy harvesting.","authors":"Seyedeh Zahra Haeri, Ali Dashan, Samira Sadeghi, Mitral Golgoli, Mehdi Khiadani, Bahram Ramezanzadeh, Masoumeh Zargar","doi":"10.1016/j.jcis.2024.12.158","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits. Comprehensive testing compared the photothermal properties of these hybrids with single-component UO66 and ML88 nanofluids. The MX structures significantly expanded the absorption range and intensity for UO66 and ML88, with MXUO66 and MXML88 displaying superior thermal conductivity and light absorption compared to single-component fluids. At a concentration of 220 ppm, MXUO66 and MXML88 achieved photothermal efficiencies of 85 % and 79 %, respectively, improving by 24.5 % and 11.3 % over UO66 and ML88 alone. Results indicate that the MX-UO66 combination is particularly effective, demonstrating the strong potential of these composites for optimizing solar energy systems. This work highlights the capability of nanoporous materials with enhanced photothermal properties, underscoring their adaptability for various solar applications and the importance of optimizing collector designs to minimize heat losses.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 2","pages":"150-165"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on enhancing solar energy capture efficiency by introducing innovative hybrid nanofluids for use in solar thermal collectors, whose performance largely depends on the absorption properties of the working fluid. The newly developed hybrid nanofluids, MXene/NH2-UiO66 (Zr) (noted as MX/UO66) and MXene/MIL-88B (Fe) (noted as MX/ML88), were synthesized using an in-situ solvothermal method, combining annealed Ti3C2Tx MXenes with water-stable metal-organic frameworks (MOFs). These nanofluids achieved high efficiency at low concentrations, providing both economic and performance benefits. Comprehensive testing compared the photothermal properties of these hybrids with single-component UO66 and ML88 nanofluids. The MX structures significantly expanded the absorption range and intensity for UO66 and ML88, with MXUO66 and MXML88 displaying superior thermal conductivity and light absorption compared to single-component fluids. At a concentration of 220 ppm, MXUO66 and MXML88 achieved photothermal efficiencies of 85 % and 79 %, respectively, improving by 24.5 % and 11.3 % over UO66 and ML88 alone. Results indicate that the MX-UO66 combination is particularly effective, demonstrating the strong potential of these composites for optimizing solar energy systems. This work highlights the capability of nanoporous materials with enhanced photothermal properties, underscoring their adaptability for various solar applications and the importance of optimizing collector designs to minimize heat losses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MXene/金属-有机框架的太阳能收集纳米流体的光热转换特性
本研究的重点是通过引入用于太阳能集热器的创新型混合纳米流体来提高太阳能捕获效率,其性能在很大程度上取决于工作流体的吸收特性。采用原位溶剂热法制备了MXene/NH2-UiO66 (Zr) (MX/UO66)和MXene/MIL-88B (Fe) (MX/ML88)两种新型杂化纳米流体,将退火Ti3C2Tx MXenes与水稳定金属有机骨架(mof)结合。这些纳米流体在低浓度下实现了高效率,提供了经济效益和性能效益。综合测试将这些混合物与单组分UO66和ML88纳米流体的光热性能进行了比较。MX结构显著扩大了UO66和ML88的吸收范围和强度,与单一组分流体相比,MXUO66和MXML88表现出更好的导热性和光吸收率。在220 ppm的浓度下,MXUO66和MXML88分别实现了85%和79%的光热效率,比单独的UO66和ML88提高了24.5%和11.3%。结果表明,MX-UO66组合特别有效,表明这些复合材料在优化太阳能系统方面具有强大的潜力。这项工作强调了纳米多孔材料具有增强光热性能的能力,强调了它们对各种太阳能应用的适应性,以及优化集热器设计以最大限度地减少热损失的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction. Ag-boosted hydroxyl adspecies generation and carbonyl intermediates release for Pt-Ag-catalyzed ethylene glycol electro-oxidation. Alkane selection as a critical factor in structuring reverse wormlike micelles. An emodin-mediated multifunctional nanoplatform with augmented sonodynamic and immunoregulation for osteomyelitis therapy. Biliquid oil-in-water nanofoams and spontaneous emulsification obtained with a surfactant resistant to curvature changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1