{"title":"Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction.","authors":"Zeyu Hu, Cancan Li, Yaqian Lin, Ying Shao, Yan Ai, Feiyan Feng, Wei Li, Zhangxiong Wu","doi":"10.1016/j.jcis.2025.01.076","DOIUrl":null,"url":null,"abstract":"<p><p>High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts. Incorporation of a Fe<sup>3+</sup>/histidine complex into the block copolymer F127/resol assembly system not only enables an assembly-foaming process forming hierarchical pores, but also promotes the creation of abundant nitrogen-coordinated single-atom Fe (FeN<sub>X</sub>) sites on well-graphitized carbon skeletons. The obtained materials possess interconnected macropores (1.5-11.5 µm), large mesopores (5-30 nm) and rich micropores, high surface areas (534-970 m<sup>2</sup> g<sup>-1</sup>), large pore volumes (0.68-1.04 cm<sup>3</sup> g<sup>-1</sup>) and rich FeN<sub>X</sub> sites. The optimized sample exhibits a superior ORR activity (onset potential 1.03 V and half-wave potential 0.89 V) to the commercial 20 wt% Pt/C catalyst, a high kinetic current density and excellent stability and methanol tolerance.The prominent performance stems from the coeffects of the hierarchical pore structure and the rich accessible FeN<sub>X</sub> sites. The significance of the pore structure is revealed by the positive linear relationship between the double-layer capacitances of the obtained materials and their ORR activities.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"684 Pt 2","pages":"52-63"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.01.076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts. Incorporation of a Fe3+/histidine complex into the block copolymer F127/resol assembly system not only enables an assembly-foaming process forming hierarchical pores, but also promotes the creation of abundant nitrogen-coordinated single-atom Fe (FeNX) sites on well-graphitized carbon skeletons. The obtained materials possess interconnected macropores (1.5-11.5 µm), large mesopores (5-30 nm) and rich micropores, high surface areas (534-970 m2 g-1), large pore volumes (0.68-1.04 cm3 g-1) and rich FeNX sites. The optimized sample exhibits a superior ORR activity (onset potential 1.03 V and half-wave potential 0.89 V) to the commercial 20 wt% Pt/C catalyst, a high kinetic current density and excellent stability and methanol tolerance.The prominent performance stems from the coeffects of the hierarchical pore structure and the rich accessible FeNX sites. The significance of the pore structure is revealed by the positive linear relationship between the double-layer capacitances of the obtained materials and their ORR activities.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies