Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures.

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemistry international Pub Date : 2024-12-25 DOI:10.1016/j.neuint.2024.105925
Tzu-Kang Lin, Ming-Shang Pai, Kun-Chieh Yeh, Chi-Feng Hung, Su-Jane Wang
{"title":"Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures.","authors":"Tzu-Kang Lin, Ming-Shang Pai, Kun-Chieh Yeh, Chi-Feng Hung, Su-Jane Wang","doi":"10.1016/j.neuint.2024.105925","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen gas (H<sub>2</sub>) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H<sub>2</sub> via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures. H<sub>2</sub> was inhaled 2 h once a day for 5 days before KA administration. The seizure activity was evaluated using Racine's convulsion scale and electroencephalography (EEG). Neuronal cell loss, glial cell activation, and the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, CCL2, and CCL3), reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus were assessed. The cerebral blood flow of the rats was also evaluated. The results revealed that KA-treated rats presented increased seizure intensity; increased neuronal loss and astrocyte activation; increased levels of ROS, TNF-α, IL-1β, IL-6, CCL2, and CCL3; and reduced Nrf2 phosphorylation levels. Pretreatment with H<sub>2</sub> inhalation significantly attenuated seizure intensity; prevented neuronal loss; decreased microglial and astrocytic activation; decreased ROS, TNF-α, IL-1β, IL-6, CCL2 and CCL3 levels; and increased Nrf2 levels. Inhalation of H<sub>2</sub> also prevented the KA-induced decrease in cerebral blood flow. These results suggest that pretreatment with H<sub>2</sub> inhalation ameliorates KA-induced seizures and inhibits the inflammatory response and oxidative stress, which protects neurons.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"183 ","pages":"105925"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuint.2024.105925","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen gas (H2) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H2 via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures. H2 was inhaled 2 h once a day for 5 days before KA administration. The seizure activity was evaluated using Racine's convulsion scale and electroencephalography (EEG). Neuronal cell loss, glial cell activation, and the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, CCL2, and CCL3), reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus were assessed. The cerebral blood flow of the rats was also evaluated. The results revealed that KA-treated rats presented increased seizure intensity; increased neuronal loss and astrocyte activation; increased levels of ROS, TNF-α, IL-1β, IL-6, CCL2, and CCL3; and reduced Nrf2 phosphorylation levels. Pretreatment with H2 inhalation significantly attenuated seizure intensity; prevented neuronal loss; decreased microglial and astrocytic activation; decreased ROS, TNF-α, IL-1β, IL-6, CCL2 and CCL3 levels; and increased Nrf2 levels. Inhalation of H2 also prevented the KA-induced decrease in cerebral blood flow. These results suggest that pretreatment with H2 inhalation ameliorates KA-induced seizures and inhibits the inflammatory response and oxidative stress, which protects neurons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
期刊最新文献
Discovery of the therapeutic potential of naltriben against glutamate-induced neurotoxicity. Understanding the Intricacies of Cellular Mechanisms in Remyelination: The Role of Circadian Rhythm. Anatomizing Causal Relationships Between Gut Microbiota, Plasma Metabolites, and Epilepsy: A Mendelian Randomization Study. A topographic approach to the markers of macrophage/ microglia and other cell types in high grade glioma. Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1